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Abstract—This paper deals with cooperative reconstruction of
environmental variables (e.g., temperature) along a road by a
vehicular sensor network using wireless communication. Vehicles
take repeated measurements and approximate the environment
using a set of basis functions. We investigate the applicability
and performance of popular averaging techniques (gossiping and
consensus propagation) on the basis coefficients, and propose
a simpler approach to avoid divergence problems. We have
developed a graphical simulation environment to study the
behavior of different algorithms in this scenario and we show
simulation results which support our simplified approach.

Index Terms—wireless sensor network, mobile sensors, gossip
algorithm, consensus propagation

I. INTRODUCTION

Considering recent developments in the field of wireless
sensor networks and cooperative communication systems for
traffic telematics, this paper addresses the problem of coop-
eratively measuring environmental variables in a network of
vehicles. Variables of interest are air and road temperature,
precipitation, road condition, etc. — anything for which in-
vehicle sensors do already exist or are likely to be introduced
in the near future. Through the exchange of information
among vehicles in ad-hoc networks, we aim at spreading
knowledge about the environment while reducing the effects
of noisy sensor measurements and at the same time keeping
the communication overhead low.

Recent works have studied algorithms using the inherent
broadcast nature of the wireless medium based on gossip-
ing [1] and consensus propagation [2], [3], in the latter case
even for scenarios with time-varying spatial fields [4]. Now
it might seem at first thought that reconstructing a (static
or slowly changing) field using a network of mobile sensors
might not pose different challenges than reconstructing a time-
varying field with a fixed network. This is not the case,
however, mainly due to the constant change of the network
adjacencies.

Furthermore, nodes in a vehicular network sometimes are
within communication range for only a very short time due
to high cruising speeds, and hence the chance for exchanging
information should not be missed even if it is brief.

The scientific contributions of this paper are as follows:
We identify the problems arising from sensor mobility when
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trying to apply existing sensor network algorithms to the
vehicular scenario (Section III). Then we describe a very
simple approach to the scenario which avoids these problems
(Section IV). In particular, our approach has the following
advantages:
• No knowledge about the network topology is required.
• It is robust to frequent topology changes.
• The quality of the results degrades gracefully under

adverse conditions.
• The overall communication costs are kept low.

For the sake of comparison, we also describe versions of
our algorithm which correspond to broadcast gossiping and
consensus propagation. To study and evaluate different com-
munication algorithms, we have developed a graphical simu-
lation environment, which we describe in Section V. Finally,
we evaluate our approach in comparison to the other two
under different conditions in our simulation environment (Sec-
tion VI). The results are in favor of our approach, and show
that it takes advantage of high traffic density particularly well.
The now following Section II introduces how we model the
scenario we consider, along with the assumptions made. We
also introduce some notation for the rest of the paper.

II. MODELS FOR TRAFFIC, ENVIRONMENT AND
COMMUNICATION

We consider a two-dimensional field with a smoothly vary-
ing environmental parameter (e.g., air termperature) with a
single road of length L running through the field. Since
vehicles can only measure the environment along the road (and
this is also what we are interested in), it is sufficient to model
location with one-dimensional real values x ∈ [0, L). We
assume each vehicle to know its own location at any time (via
satellite, maps and, e.g., inertial sensors). Any vehicle a can
measure the environmental parameter e(x) at position x using
its on-board sensor, which is affected by additive Gaussian
sensor noise na(x) with standard deviation σn, resulting in
noisy measurements êa(x):

êa(x) = e(x) + na(x), (1)

na(x) ∼ N (0, σn2). (2)

Vehicles enter the road section in question at both end points
(positions 0 and L) and make their way through the field
to the other endpoint, where they leave the scenario. Fig. 2
illustrates the concept of repeated noisy measurements of an



environmental parameter at changing locations. We assume the
wireless communication between vehicles to be bounded by
some communication radius R in the Euclidean plane.

III. ISSUES ARISING FROM MOBILITY

The most important consequence of mobility in the scenario
we are considering is that vehicles collect measurements from
different locations as time passes and they move through the
scene. Hence they need to keep track of the location of their
measurements, and exchanged messages also need to contain
location information. This also means, however, that as time
passes each vehicle accumulates more and more knowledge
about the environment from its own measurements alone.

A second important consequence is that the network topol-
ogy constantly changes. While some vehicles might be able to
communicate over a long period of time because they travel
in the same direction with similar speeds, vehicles traveling
in opposite directions will have only a short time window
to exchange messages. The information provided by those
vehicles is especially useful, however, as it typically concerns
areas of the environment the other vehicle has not yet seen.

Due to these reasons, successful algorithms for static net-
works like broadcast gossiping [1] and consensus propaga-
tion [2] cannot be applied in a straightforward way to the
mobile scenario: In the case of consensus propagation the
algorithm makes direct use of the set of neighbors in excluding
the message received from a node in the previous iteration:
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where i and j are the source and destination nodes, respec-
tively, N (i) is the set of neighbors of i, yi is the measurement
taken by node i, and β > 0 is an attenuation parameter.
Nodes exchange value pairs (µ,K), where µ and K can be
interpreted as iterative estimates of the average and cardinality,
respectively.

This exclusion of j is also performed in the broadcast-
adapted version of consensus propagation [3], where the
respective values are subtracted in the receiving node as a post-
processing step. However, with the topology changing between
iterations, assumptions about known past messages might not
hold – neither at the sending nor the receiving node.

Broadcast gossiping does not make explicit use of knowl-
edge about neighbors, however the time model used for
convergence analysis makes the implicit assumption that each
node receives equally many messages from all its neighbors,
which does not hold in the mobile scenario. The impact of
mobility on gossiping has been studied before [5], but without
considering multiple measurements at different times and
locations. Also, consensus among moving agents (and hence

switching topology) has been studied before [6], however
under the assumption of a fixed set of nodes in a strongly
connected and balanced graph, where edges are added or
removed as the agents move. This is very different from
the scenario considered here, where new nodes (with little
knowledge) enter the network, and older nodes (with much
knowledge) leave the network, and connections are sparse.

IV. PROPOSED APPROACH

To deal with the aforementioned issues arising from sensor
mobility, we propose the following approach to the vehicular
scenario. As vehicles move, they repeatedly take measure-
ments and store them along with the current location. The
road of length L is divided into sections S1, S2, ..., SdL/Ke
of length K where the section borders are globally defined
and known to all vehicles. Whenever a vehicle a completes
collecting measurements for a section Si, it compresses the
information by approximating the environment in the section
as a linear combination of basis functions u1, ..., uD, i.e.,

e(i, x) ≈
D∑
d=1

c
(a)
i,d ud(x), (5)

with 1 ≤ i ≤ dL/Ke and 1 ≤ x ≤ K, resulting in D

basis coefficients c(a)i,d for each section that are determined by
vehicle a. The section length K, the subspace dimensional-
ity D and the basis functions themselves should be chosen
appropriately for the environmental variable in question, such
that approximating the noisy measurements already reduces
the sensor noise in the resulting model, but still avoiding
underfitting of the measurement data, i.e., minimizing the
overall error considering the tradeoff between model bias and
model variance [7].

At regular time intervals, vehicles broadcast the coefficients
they have determined to other vehicles in range. Receiving
vehicles collect such messages, and update their belief state on
the corresponding sections to the average of all available ap-
proximations, thus further reducing the effects of sensor noise
(and also sensor bias). More formally, let Va,i = {b, c, d, ...}
denote the set of vehicles from which a message concerning
section Si has been received by vehicle a. Va,i may or may
not contain a itself, depending on whether or not a has already
traveled through Si. Vehicle a can then compute the average
coefficients
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1 ≤ d ≤ D, and use these to reconstruct the environment in
section Si as in (5).

Note that the coefficients broadcasted by each vehicle are
still the ones based on its own measurements only, unaffected
by incoming messages. Only when exchanging data, e.g., with
a road-side unit of the road operator, vehicles provide their
best estimate of the environment in the form of the averaged
coefficients. This will of course lead to duplicate messages
being received, but they can be easily discarded based on
vehicle and section identifiers (which of course need to be
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Fig. 1. Illustration of the proposed approach. Vehicle a provides vehicle b
with its coefficient vector for section S1, and vehicle b provides vehicle a
with its coefficient vectors for sections S3 and S4. Both a and b are currently
collecting measurements for section S2. Vehicle d has just completed collect-
ing measurements for section S4 and is now calculating the corresponding
coefficients. It will then discard its measurements and will later provide its
c
(d)
4 to a, when they are within communication range.

part of the transmitted messages). The protocol is illustrated
in Fig. 1. One more thing to note is that vehicles need to
eventually stop sending out information when it is outdated,
e.g., broadcast coefficients only for the last n sections they
traveled through.

Keeping the protocol this simple has the following advan-
tages:

• No knowledge about the network topology is required.
• The protocol is robust to (frequent) topology changes.

In particular, receiving many messages from a vehicle b
(traveling in the same direction with similar speed) but
only very few messages from a vehicle c (traveling in the
opposite direction) does not result in a bias towards b’s
model in the receiving vehicle.

• The quality of the results degrades gracefully under ad-
verse conditions like message loss, communication delays
and decreasing traffic density.

• Choosing an appropriate set of basis functions for the
environmental parameter and application under consider-
ation keeps the messages small in size, and as it is often
sufficient that two given vehicles exchange information
only once, the number of messages is also kept small.
This results in overall low communication costs.

We will refer to the algorithm described so far as “proposed
algorithm”.

For the sake of comparison, we also consider a version of
the protocol where vehicles always broadcast and update their
current belief state (i.e., coefficients are averaged on each
incoming message). This roughly corresponds to broadcast
gossiping, with the difference that vehicles “wake up” at
regular intervals rather than randomly (to ensure an equal
amount of messages for a fair comparison), and that additional
measurements enter the algorithm during runtime. We will
refer to this version as “gossiping”.

Furthermore, we also consider a version of consensus prop-
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Fig. 2. An exemplary environmental parameter e(x) (thick gray line),
one vehicle’s noisy measurements ê(x) (thin gray line) and that vehicles
approximation (back line).

agation, in which vehicle a broadcast the values
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ĉ
(v)
i,d Kv,i

 , (8)

1 ≤ d ≤ D (compare (3) and (4)), which differs from original
consensus propagation [2] in that we do not exclude the
receiving node from the sums – not even in post-processing,
as it is done in the broadcast-based version [3]. The reason
for this is that in a constantly changing network on the one
hand the sending node does not know which other nodes will
receive its message, and on the other hand a receiving node
cannot assume that the incoming message has been influenced
by its own last outgoing message. This means that without
introducing some additional handshake or acknowlegement
functionality to the protocol, we have no other choice than
summing over all neighbors. Note also that for the concept of
“neighbors” we use the set Va,i, which we earlier defined as
the set of vehicles from which a has received any messages.

Also, we use the unattenuated variant of consensus propa-
gation (β = ∞), as this has shown the best performance in
our experiments (compare (3)). We will refer to this algorithm
as “consensus propagation” in the following.

V. SIMULATION ENVIRONMENT

We have developed a graphical simulation environment1 to
experiment with different sensor network algorithms for the
scenario we are interested in. In addition to the properties
already stated for the scenario, the simulation environment
makes the following simplifications and assumptions:

Vehicles enter the road at both endpoints according to
a rate λ Poisson process and hence the inter-car times at
the endpoints are exponentially distributed. The parameter
λ can also be understood as specifying the (inverse) traffic
density. We assume each vehicle a to travel at a constant

1Demonstration videos at http://userver.ftw.at/~schabus/vtc2011spring/



velocity va which is drawn from a Gaussian distribution,
va ∼ N (µv, σv2). So far, we do not use any concept of lanes
or overtaking, therefore faster vehicles pass slower ones as if
they were not there. As long as the Euclidean distance between
two vehicles is smaller than the communication radius R, we
assume error- and noise-free communication between them.

The exemplary environmental parameter profile we used is
depicted in Fig. 2, where a thick gray line indicates the true
environment e(x), a thin gray line indicates one vehicle’s noisy
measurements ê(x) and a black line indicates that vehicles
approximation using basis functions, determined from its
measurements. We take the road length to be roughly 7800m in
length, and divide it into seven sections of 1km length, leaving
400m at the beginning and the end as padding. We assume
vehicles can take a measurement every 25m, which requires a
measuring frequency of ≤ 2Hz for speeds up to 180km/h. For
the sake of smooth section connections, we add an overlap of
200m to both section ends. This results in 56 measurements
per vehicle per section. We interpret the field values as air
temperature varying between 18°C and 28°C. The parameters
λ, µv , σv , R, σn (traffic density, mean and standard deviation
of velocity, communication radius and standard deviation of
sensor noise) can be adjusted at runtime taking immediate
effect. Additionally, the environment allows on-line switching
between different algorithms to study their behavior. A live
performance charting component, which continuously updates
the current measurement and approximation error graphs, has
proven particularly useful.

VI. SIMULATION RESULTS

For comparison of the three described algorithms, we have
conducted experiments in our simulation environment with
fixed parameters

µv = 130km/h
σv = 20km/h,
R = 300m

and varying

λ ∈ {10, 20, 30, ..., 200},
σn ∈ {0.00, 0.25, 0.50, ..., 5.00}.

As basis functions we used the first 10 Legendre polynomials,
and the basis coefficients were computed from the noisy
measurements in a least squares fashion. We have measured
the mean squared error (MSE) per vehicle over 100 vehicles
that traveled entirely through the scene, each vehicle reporting
its estimates upon leaving the road. The results are shown in
Fig. 3. As expected, the error increases with increasing sensor
noise as well as with decreasing traffic density, and we can
see that gossiping performs worse than the other two overall,
which are rather similar. Interestingly, gossiping seems to be
unable to take as much advantage of high traffic density (small
λ) to cope with strong sensor noise as the other two.

For a more direct comparison, we show a selection of the
same data in two-dimensional plots in Fig. 4 and 5. Fig. 4
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Fig. 3. Mean squared error of the proposed algorithm (top), consensus
propagation (middle) and gossiping (bottom) over varying values of inverse
traffic density (λ) and sensor noise (σn).
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shows the influence of sensor noise on three selected densities
for all three algorithms. It reveals that the proposed algo-
rithm (solid lines) outperforms consensus propagation (dotted
lines), and that gossiping (dashed lines) does not degrade as
gracefully and generally shows higher error. Fig. 5 shows
the influence of (inverse) traffic density on three selected
sensor noise levels for the three algorithms. We can see that
the biggest difference between the algorithms is observed in
high traffic density (on the left side of the graph), suggesting
that the good performance of the proposed algorithm is due
to its ability to take advantage of many incoming messages
particularly well.

VII. CONCLUSION AND OUTLOOK

We have investigated cooperative distributed estimation of
an environmental field by a network of sensor-equipped vehi-
cles, which exchange messages in ad-hoc wireless networks in
a broadcast fashion. Considering two successful protocols for
static wireless sensor networks, namely broadcast gossiping
and consensus propagation, we have identified the additional
challenges and problems arising from sensor mobility. Espe-
cially the constant change of the network topology brings
a quite drastic change to the situation. Therefore we have
proposed a somewhat simpler approach to the problem, which
does not make explicit or implicit assumptions about the node
neighborhoods and is hence robust to changes in network
topology.

The idea is that each vehicle computes an approximation
of a section of the environment based on its (noisy) measure-
ments from that section, using a linear combination of basis
functions. Then the vehicle begins to broadcast its findings
about the environment in the form of the basis coefficients, and
receiving vehicles collect such messages. When the current
best estimate of the environment is required, for example when
the information is provided to the driver or to a road-side unit
of the road operator, an approximation based on the average
of all received coefficients for the section in question is used.

We have developed a simulation environment to experiment
with different communication algorithms and to evaluate the
proposed approach. Simulations with varying levels of sensor
noise and traffic density have shown that it performs better
than similar protocols roughly corresponding to broadcast gos-
siping and consensus propagation. Its superiority is particularly
well visible under high sensor noise (an adverse condition) and
high traffic density (a favorable condition), suggesting that the
proposed approach takes good advantage of the high number
of messages received in dense traffic.

As future work, we want to consider fields with various
properties and matching basis functions, in particular dis-
crete prolate spheroidal sequences (also known as Slepian
sequences) [8], which are of high interest because they would
eliminate the need for matrix inversion in the least squares step
of determining the coefficients. We would also like to develop
our models and our simulation environment in the direction of
more and more realism, i.e., use a more realistic movement and
communication model, allow the field to vary over time, etc.,
and study the behavior of cooperative estimation techniques
under these more realistic conditions.
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