Multimodal Highway Monitoring for Robust Incident Detection

Michael Pucher, Dietmar Schabus, Peter Schallauer, Yuriy Lypetskyy,
Franz Graf, Harald Rainer, Michael Stadtschnitzer, Sabine Sternig,
Josef Birchbauer, Wolfgang Schneider, Bernhard Schalko

Abstract— We present detection and tracking methods for
highway monitoring based on video and audio sensors, and
the combination of these two modalities. We evaluate the
performance of the different systems on realistic data sets that
have been recorded on Austrian highways. It is shown that we
can achieve a very good performance for video-based incident
detection of wrong-way drivers, still standing vehicles, and
traffic jams. Algorithms for simultaneous vehicle and driving
direction detection using microphone arrays were evaluated
and also showed a good performance on these tasks. Robust
tracking in case of difficult weather conditions is achieved
through multimodal sensor fusion of video and audio sensors.

I. INTRODUCTION

To control the increasing traffic-flow on highways and to
meet safety and security standards, monitoring of traffic is
becoming more and more important. For this purpose the
Austrian road operator ASFINAG has around 600 cameras
on high- and expressways in open road surroundings. To
improve the workflow of the operators and to ensure that
almost every accident is recognized, video-based incident
detection is required. Existing incident detection systems
have to be improved for the reliable surveillance of highways.
Especially wrong-way drivers must be detected reliably to
avoid severe damages to health and property.

Traffic safety can be improved through the increase of
detection rates and the decrease of false alarm rates of
automatic event detection systems. These systems form the
basis for a wide number of possible applications. In our work
we focused on three scenarios, namely detection of wrong-
way drivers, traffic jams, and still standing vehicles.

Operators watching video surveillance cameras are the
simplest and most common method to monitor roads and
highways. Detecting wrong-way drivers using this approach
is difficult, since the personnel have to watch the cameras
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all the time to spot the event. For such critical events like
wrong-way drivers, feedback has to be given within a very
short time interval to be able to act properly.

Automatic traffic surveillance methods are therefore an
appropriate method to overcome this drawback, since in-
formation is retrieved instantly or with a sufficiently small
latency. Today many vehicle detection systems rely on induc-
tive loop detectors and TriTech (infrared, ultrasonic, radar)
sensors. However, installation and maintenance problems of
these detectors have necessitated the development of non-
intrusive alternative solutions with low maintenance costs. A
few non-intrusive systems have become more prominent in
the last years on Austrian highways, where in most cases Tri
Tech sensor techniques were applied.

Starting from the existing methods and systems, we im-
proved and adapted these systems in order to get more robust
systems. The major focus of our work was to improve the
video system and to increase the robustness of the whole
system in case of fog, occlusion, or poor sight using audio-
based methods and multimodal sensor fusion.

Audio-visual detection methods have the advantage of
being non-intrusive, i.e., no sensors have to be installed on
the road surface. Furthermore, video cameras are already
ubiquitous such that a video-based detection system can
cover a wide area of highways without the need to install
additional sensors.

video camera

microphone array )

///-- \\\\\\\\ =
® wm

Fig. 1. Scenario for audio-visual highway monitoring

Fig. 1 shows the basic system setup of our test site. It
is equipped with video cameras and acoustic sensors (mi-
crophone arrays), which are mounted on a highway gantry.
The video cameras are able to monitor a relatively large area
of the highway and are therefore used for the detection of
wrong-way drivers, still standing vehicles, and traffic jams.
The microphone array is able to monitor a relatively small
area of the highway and is therefore used for the detection
of wrong-way drivers only, as the other two events cannot
reliably be detected in such a small area. To fuse the two
sensors, we have to apply temporal fusion since the areas



monitored by the two sensors are not the same and do not
even overlap. Sensor fusion is used to realize a more robust
system that can maintain the information of the video system
and thereby monitor a large area of the highway. To realize
temporal fusion it is necessary to relate the two different
detection regions and make assumptions about the behavior
of vehicles in the area which is not monitored. In our case,
we use the velocity estimation from the video system and
assume constant velocity of the vehicles in the area between
audio and video sensor.

II. VIDEO DETECTION

Within the video detection task we have to identify image
regions that correspond to vehicles. Different strategies are
required for the detection of cars and trucks. This is caused
by different levels of complexity between the two vehicles
types. Trucks have a greater intra-class variation and the fea-
tures used for car detection cannot be transfered to represent
these differences.

A. Car Detector

For car detection, a scene-specific real-time approach is
used [1], [2]. This approach is based on classifier grids,
where an input image is sampled with a fixed highly over-
lapping grid. Each grid element corresponds to one classifier.
The idea of classifier grids is visualized in Fig. 2. The
scene calibration, e.g., knowing the ground plane, is used
to reduce the search space significantly and to ensure real-
time performance.
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Fig. 2. The input image is divided into highly overlapping grid elements,
where each grid element corresponds to one classifier.

As classifiers, on-line boosting for feature selection was
used [3]. Boosting forms a strong classifier H(xz) =
ZT]:[ aphn(z) through a linear combination of N weak
classifiers h,(x) [3].

B. Truck Detector

Since more complex features are needed for truck detec-
tion, which cannot be used with classifier grids under real-
time constraints, a different approach was used for truck
detection. Here a background model was used to identify
regions of interest, and within the regions of interest a
support vector machine was used as a classifier in a sliding
window manner.

An approximated median background model [12] was
used, where the background template B for pixel (m,n) is
updated according to

Bi(m,n) = Bi_1(m,n) +sign(B;_1(m,n) — L;(m,n)) xc.

The pixel intensity of the background model B;(m,n) is
increased by c if the intensity of the current image I,,(m,n)
is less than the intensity in the background model, and
decreased otherwise. Thereby regions can be detected that
vary from the background model in order to identify large
blobs with potential trucks. For the detection of trucks within
these detected regions we use a support vector machine for
classification [13].

ITII. VIDEO TRACKING

The vehicle detector described above serves as input for
video based vehicle tracking. For performance reasons we
apply the detector only in small detection areas (see Fig. 3)
where vehicles enter the tracking area. Once a vehicle is
detected in the detection area, it will be tracked indepen-
dently from the detector. The vehicle tracking algorithm itself
consist of three core parts.

The basic tracking approach allows efficient vehicle track-
ing near the camera. The feature points tracking algorithm
described in [4] is used as input. In the whole image a pre-
defined number of best trackable feature points is generated
and tracked from frame to frame with sub-pixel accuracy.
We exploit only feature points that could be tracked at least
over the last N frames (typically, N = 4). This helps to
reduce outliers due to noise or other video deteriorations.
This feature point tracking is done at half image resolution by
using every second field of the video. Our evaluations have
proven that the tracking quality for tracking near the camera
remains comparable with full resolution tracking, while the
computing time is decreased significantly. At the same time
we avoid the need for a de-interlacing scheme, which would
be required for full resolution tracking of vehicles. Ground
plane calibration is taken into account for calculating the
vehicle region movement out of the motion of multiple
feature points. The calibration will be done automatically
once for each camera position.

As the second algorithmic core part, we propose the
position and appearance check scheme. Since small frame-
to-frame tracking errors could be accumulated over longer
periods of time, potentially resulting in a position drift,
we apply an appearance based algorithm partially described
in [5]. We correct a tracked position with the help of
an individual vehicle appearance model every N frames
(typically, N = 10...15). The algorithm is implemented
with sub-pixel accuracy — this is especially important for
areas distant from the camera where objects displacements
between two successive frames can be significantly smaller
than a pixel.

As a third algorithmic core part, we apply long distance
tracking in areas far distant from the camera (see Fig. 3),
where we use the full image size if the size of the tracked
vehicle is becoming smaller than a certain threshold 7" (1" =
20 pixels). This allows us to increase the tracking distance
by 140 meters on average as shown in Table I. Cars can be
tracked at least 380 meters and up to 600 meters in maximum
from the camera.



Fig. 3. Video-based vehicle tracking. Detection area indicated in white,
tracking area in light grey, long-distance tracking area in black and the
actual vehicle tracks are in dark grey.

IV. EVALUATION OF THE VIDEO SYSTEM

The video detection and tracking system was integrated
into the Siveillance™ hardware platform for testing and
evaluation. Velocity estimation is also realized within this
platform according to the method described in [7] based
on pixel velocity and world coordinates. The platform was
also used to evaluate the detection performance of the video
system for the 3 types of events that are of interest to us, i.e.,
traffic jams, still standing vehicles, and wrong-way drivers.
Precision and recall values for the different events are shown
in Table II. Basis for the evaluation have been approximately
200 videos with an average length of 5 minutes, that have
been acquired during the project period, mainly on the field
test site location in Inzersdorf, Austria. The videos have
been selected in such a way that they are challenging, e.g.,
by using an independent sensor system that is capable of
detecting some of the events in the scope of our work.

Recall and precision values are defined as follows.

#Correct event detections

Precision [%] = ; :
[%] #Event detections in total
#Correct event detections

Recall [%] =
ccall [%] #Events in total

In words, precision gives the percentage of true events
among all events reported by the system, and recall gives the
percentage of true events that were correctly detected by the
system among all true events. A perfect system would reach
100% for both values, but false alarms decrease precision
and missed events decrease recall.

TABLE I
LONG-DISTANCE TRACKING.

Car tracking distance in meters
(min. / mean / max.)

266 / 359 / 495
380 /499 / 602

Method

No long-distance tracking
Long-distance tracking

TABLE I
VIDEO-BASED EVENT DETECTION.

Event Recall / precision in %
Wrong-way driver 100 / 91
Still standing vehicle 93 /95
Traffic jam 99 /100

V. AUDIO DETECTION

microphone
array

Fig. 4. Beam steering using horizontal and vertical line arrays.

Previous approaches to vehicle detection using micro-
phone arrays were not able to detect vehicles and determine
their direction on multiple lanes at the same time due to the
assumption of a fixed analog time delay [6]. With today’s
signal processing capabilities it is however possible to steer
the beam (spot) of the microphone array using variable
digital time delays. This allows us to use a cross-shaped
microphone array to perform horizontal and vertical beam
steering as shown in Fig. 4.

The horizontal array was first fixed to the 0°-direction
to form a narrow beam across the lane direction. If a car
passes this spot, the power gathered by the beam increases
significantly. By thresholding the power a car is detected. If
a car is detected, the algorithm uses the information of the
surrounding steered beam powers, by steering the array along
the lane direction, of subsequent and earlier time frames to
extract the cars direction. In a similar way, the vertical line
array is steered across the lanes to extract the powers at
the detection time. The lane is derived by extraction of the
position where the power is forming a maximum.

The performance of this method on our recorded databases
is shown in Table III. The performance of direction detection
is directly transferable to the detection of wrong-way drivers.
Direction detection was applied to all vehicles that were
correctly detected by evaluating the temporal structure of
the horizontal beam power using linear regression.

TABLE III
AUDIO-BASED VEHICLE AND DIRECTION DETECTION.

Vehicle detection Direction detection

Dataset Rec. / Prec. in %  Detection rate in %
1707 vehicles in 155 min. 96.4 / 98.6 99.7
830 vehicles in 70 min. 97.0 / 95.0 98.6




VI. SENSOR FUSION

Multisensor data fusion has been investigated for a long
time [9], [14]. It remains an important topic since more
different sensors and modalities are processed in today’s
information processing systems.

Sensor fusion of the visual and auditive modality has
been investigated intensively within the speech processing
community in audio-visual speech recognition [15] and
speaker tracking [10], [16] but also in domain independent
approaches to audio-video object localization [17]. Audio-
visual sensor fusion for vehicle detection has been investi-
gated in [18]. These previous works on audio-visual sensor
fusion do however not consider temporal sensor fusion,
where the observed areas between audio and video sensor
do not overlap. This is the case for the highway monitoring
scenario that we consider and also for many other different
realistic scenarios. It is often not possible to mount video
and audio sensors in a way such that temporal fusion can be
avoided.

Temporal fusion of asynchronous sensors increases the
complexity of the fusion system, since assumptions have to
be made concerning the behavior of objects in areas which
are not observed. [19] formulates a Bayesian approach to
this problem for multiple sensors and targets in automotive
applications.

We developed a sensor fusion system for the fusion of
asynchronous sensors. For our first sensor fusion system, we
decided to implement a temporal decision level fusion system
with decision-in and decision-out [9].

By applying sensor fusion, we aim at combining the
advantages of both sensors while getting rid of the dis-
advantages of the sensors. The principal advantages (+)
and disadvantages (=) of both sensors, apart from practical
advantages of the video sensor like availability of cameras
at many places, are as follows:

¢ Video

+ Observation of vehicles within a long time-space
interval (hence suitable for all three scenarios)
— Performance depends on weather conditions

¢ Audio

— Observation of vehicles within a short time-space
interval (hence suitable for the detection of wrong-
way drivers only)

+ Robust against different weather conditions

¢ Sensor fusion

+ Observation of vehicles within a long time-space
interval (hence suitable for all three scenarios)
+ Robust against different weather conditions

Because we have a time span where the vehicle is not
observed (see Fig. 1) we have to achieve a temporal sensor
fusion. To correlate the video and audio detections / trackings
we use the velocity estimated from the video tracking. Fig. 7
shows the correlation between estimated velocity on the x-
axis and the number of frames between the appearance of
the vehicle on the audio and video sensor on the y-axis. The
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Fig. 5. Sensor fusion system with unmatched vehicle.

polynomial regression leaves a certain mismatch, which can
have three reasons:

1) No constant velocity between video and audio event,
contrary to assumption.

2) Error of video-based velocity estimation.

3) Differences of first appearance of video tracking. Video
tracking may start on different frames depending where
the first detections happens.
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Fig. 6. Sensor fusion system with matched vehicles.

Although we have to deal with these sources of error, we
are still able to match audio detections and video tracks
as shown in Fig. 5 and Fig. 6. In Fig. 5 we have one
audio detection, which is matched to one video track and
one video track remains unmatched. In Fig. 6 both video
tracks are matched to the corresponding audio detections.
The sensor fusion algorithm performs an optimal matching
of video tracks and audio detections using the predicted audio
detections shown as bell curves at the bottom. It aligns events
in a certain time interval by finding the best alignment.
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Fig. 8. Video system with simulated fog.

The biggest advantage of sensor fusion is realized under
difficult weather conditions. Therefore we simulated fog by
changing the contrast of videos continuously from the top
to the bottom (see Fig. 8). This is a scenario which is very
difficult for the video system, as can be seen by the low
number of video tracks compared to audio detections in
Fig. 8.

For the sensor fusion system we increased the sensitivity
of the video system and applied temporal decision level
fusion using this modified video system. Using the more
sensitive system, we get a higher number of video detections
/ trackings, which are matched to the audio detections as can
be seen in Fig. 9 and Fig. 10. A higher number of detections
is necessary to be able to improve the baseline video system.
Otherwise it would not be possible that the sensor fusion
system outperforms the video system when fog is present.

The results for this system, the audio system, and the
regular video system are shown in Table IV using cross
validation on our data set. Note that the results in this table
are not event detection results, but reflect the success of

g
S

audio pdf
0.04

1'AT2 Y A 10
X\ A 15
y y YA \
[ o e\ el e

8500 8600 now 8800 8900
frames

0.00

Fig. 9. Sensor fusion system with no fog.
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Fig. 10. Sensor fusion system with fog.

correctly detecting/tracking vehicles. Even though the results
for the audio system alone are better than for the sensor
fusion system, the audio system is by itself of no use to
detect, e.g., still-standing vehicles. Only through successful
combination with a track from the video system can we
hope to detect such an event. In comparing the sensor fusion
system with the video system, we can see that the former is
more robust in the presence of fog, where the latter fails: only
12% of all passing vehicles are detected. By combining the
two sensor modalities, we bring the robustness of the audio
system to all three scenarios, reaching 89% of recall at the
vehicle detection level under the challenging fog condition.

TABLE IV
SENSOR FUSION BASED TRACKING (320 VEHICLES IN 20 MIN).

Method No fog Fog
Rec. / Prec. in %  Rec. / Prec. in %
Audio 93/92 93/92
Video 100 / 47 12/ 95
Sensor fusion 86 / 86 89 /90




In this system design, the audio detection is still a baseline
for the sensor fusion system, which cannot be surpassed since
we perform decision level fusion. In the future we plan to
implement score level fusion to overcome this constraint.

VII. CONCLUSIONS AND FUTURE WORK
A. Conclusions

We have shown how to implement a robust real-time video
based event detection system and have evaluated the system
on a realistic data set taken from recordings that were made
on Austrian highways. The system was evaluated on the
detection of three critical traffic events, namely traffic jam,
still standing vehicle, and wrong-way driver. The system
was shown to have very good performance on the detection
of these events. We evaluated long-distance tracking and
showed that we can track vehicles between 200 and 600
meters and also realized video-based velocity estimation.

We have developed methods for the acoustic detection
of wrong-way drivers. These methods were also evaluated
on realistic audio recordings from highways, where they
showed good performance on vehicle and direction detection.
Especially for bad weather conditions the audio system is
very valuable for detecting wrong-way drivers.

We have shown how sensor fusion can be used to make
the system robust in the case of difficult weather conditions,
while preserving the full information from the video tracking.
The sensor fusion algorithms were also evaluated on realistic
synchronized audio-video recordings from highways. The
sensor fusion system which was described in this paper is a
first step towards realizing the full potential of sensor fusion
for highway traffic monitoring.

All information that can be derived automatically from
video, audio, and other sensor data can be used by the
operator to inform drivers on the highways using the pub-
lic highway information system. Thereby traffic safety and
security of highways can be improved.

B. Future Work

In our future work we want to concentrate on different
weather conditions (fog, rain, snow, etc.) and also include
new scenarios (lost payload, persons walking on the highway,
etc.). Furthermore, we also want to focus on difficult lighting
conditions such as are present at night when there is no
road lighting or when there are vehicles coming towards the
camera. The tracking algorithms will also provide the basis
for visibility estimation. Generally we aim at improving the
robustness of our tracking and detection methods.

Concerning audio detection, we aim at realizing real-time
algorithms that can be deployed on a highway network. To
achieve this goal we will also investigate the design and
development of low-cost microphones. Additional goals are
the evaluation of audio detection algorithms under difficult
weather conditions (rain, snow) and the optimization of
vehicle and direction detection.

For sensor fusion, we will include information on the score
level from video, audio, and additional sensors (Bluetooth;
Combination of passive infrared, ultrasonic and microwave
radar). Furthermore, we want to investigate the fusion of
sensors with the same modality, e.g., video cameras directed
towards different spots of the highway. Another interesting
line of research is the integration of signaling information
from a mobile phone network. This type of signaling data
shall be fused with other sensor data for deriving high-level
traffic events.
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