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Abstract
We show how to visually control acoustic speech synthesis by
modelling the dependency between visual and acoustic param-
eters within the Hidden-Semi-Markov-Model (HSMM) based
speech synthesis framework. A joint audio-visual model is
trained with 3D facial marker trajectories as visual features.
Since the dependencies of acoustic features on visual features
are only present for certain phones, we implemented a model
where dependencies are estimated for a set of vowels only. A
subjective evaluation consisting of a vowel identification task
showed that we can transform some vowel trajectories in a pho-
netically meaningful way by controlling the visual parameters
in PCA space. These visual parameters can also be interpreted
as fundamental visual speech motion components, which leads
to an intuitive control model.
Index Terms: audio-visual speech synthesis, HMM-based
speech synthesis, controllability

1. Introduction
One key strength of the HSMM-based speech synthesis frame-
work [1] lies in its greater flexibility in comparison to wave-
form concatenation methods, often accredited to the possibility
to use model adaptation [2] and interpolation [3]. In addition to
these data-driven approaches to diversify the characteristics of
synthetic speech, methods that allow more direct control using
phonetic background knowledge have been proposed more re-
cently. Acoustic speech characteristics have been successfully
modified by exercising control on articulartory [4] as well as
on formant [5] parameters. This is achieved by training piece-
wise linear transformations from the models for the articulatory
or formant domain to the models for the acoustic domain, us-
ing a multimodal data corpus. Similar to these works, in this
paper we investigate the possibility of using visual speech fea-
tures based on facial marker motion data to modify and control
acoustic synthetic speech. Our work is similar to [4], but uses
more restricted features (e.g., no tongue positions) which are
easier to record.

Possible use cases of this include more intuitive control of
speech synthesis, the possibility to use physically intuitive data
to constrain trajectories as well as the possibility to use this
information in language learning to provide clues of required
changes.

To investigate the possibility of visual control, we modified
the system used in [5] to control acoustic speech synthesis by
visual features (instead of formants). The same line spectral
pairs features as in [4] are adopted as acoustic features in our
approach.

2. Data and System
We work with a corpus of synchronous audio and facial motion
recordings [6] where facial motion was recorded using an Opti-
Track system [7], which records the 3D positions of 37 markers
glued to a speaker’s face at 100 Hz. This corpus was originally
recorded for speaker-adaptive audio-visual speech synthesis [8].
In this paper, we used one male speaker’s data consisting of 223
Austrian German sentences amounting to roughly 11 minutes
total.

2.1. Training

In a first attempt, we replaced the formant stream in the system
described in [5] with a visual stream, resulting in a joint audio-
visual model. The visual features were computed from the 3D
facial marker coordinates via Principal Component Analysis
(PCA) as described in [6]. However, by comparing the varia-
tion of the spectral features with respect to the different phones
to the variation induced by the transformation when modify-
ing PCA features, we found that the changes due to the trans-
formations were very small. Hence it would be impossible to
achieve a natural variety of different phones in this way. A fur-
ther reduction of the number of visual dimensions lead to an
even smaller amount of change induced by the transformations,
hinting at the insufficient explanation of the spectral features by
the visual features.

To improve the expressiveness of the features with respect
to different phones and increase the ability to interpret them,
PCA was abandoned and raw coordinate features used. To re-
duce the dimensionality of the raw visual features, a selection of
some visual markers with a direct influence on speech produc-
tion was made: mouth opening and lip protrusion, represented
by the markers jaw, lower lip and upper lip. This is similar to
the facial markers in [9]. The movement of these markers in the
left/right direction was assumed to be negligible, thus only the
Y and Z axes were used. A new joint audio-visual model was
trained with these features. To ease visualization PCA was done
on this restricted model.

It is not possible to distinguish all phones merely by their
visual features. Depending on the speaker, the visual features
overlap considerably for different phones, since the visual fea-
tures mostly capture openness and roundedness. This explains
the initial results and is similiar to the reason for using visemes
in visual speech synthesis[10].

Figure 1 shows the visual features retrieved from forced
alignment of the training data with respect to all vowels and
diphthongs. A bagplot [11] is used to illustrate the distribu-
tion of the naturally occurring trajectories. This is done in
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Figure 1: Bagplot showing the distribution of vowels and diph-
thongs from the training data in PCA1⇥PCA3 space.
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Figure 2: Bagplot showing the distribution of selected vowels
(/a: e: i: o: u:/) from the training data in PCA1⇥PCA3 space.

PCA1⇥PCA3 space.
Since the visual data for different phones overlaps, we de-

cided to constrain the dependency modeling on a small set of
vowels.

The selection of phones that contribute to a transformation
is a trade-off between a set comprising more and a wider vari-
ety of phones and more distinctive visual representations. For
our experiments the set of vowels /a: e: i: o: u:/ was chosen.
Figure 2 shows the grouping and overlap of the visual features
in PCA1⇥PCA3 space. Notice how this resembles the vowel
trapezium (rotated and mirrored, open-close from right to left).
While the PCA1⇥PCA2 space showed even more resemblance
with the vowel diagram, the PCA1⇥PCA3 space provides more
distinction between /o: u:/ and /a: e: i:/. Which is consistent
with better control regarding changes from /o: u:/ to /a: e: i:/
and vice versa and also the reason for choosing PCA1⇥PCA3
instead of the former.

The system uses a common clustering for acoustic and vi-
sual features, and thus for each acoustic leaf there is a corre-
sponding visual leaf. Each leaf in the clustering tree can be
assigned a transform and each transform can be assigned to sev-
eral leaves. We used a single global transform for the selected
vowels. To achieve this clustering, we introduced an /a: e: i:
o: u:/ question at the root of the clustering tree. For all models
outside of the /a: e: i: o: u:/ subtree, no transformations were
trained, as illustrated in Figure 3.

Since we adapted the system from [5], we applied the same




 




 









  











Figure 3: Clustering tree with /a: e: i: o: u:/ central phone
question.

equations, described in more detail in [9], for EM estimation of
the visual means µYj :

µYj =

�T
t=1 �j(t)yt�T

t=1 �j(t)
, (1)

where yt and xt describe the visual and acoustic observa-
tion vectors at time t respectively, �j describes the state occu-
pancy probability of state j and T is the total length of training
data.

For the acoustic means µX̂j
of the models in the /a: e: i: o:

u:/ subtree, we use the dependency model parameters to apply
a linear transformation from visual to acoustic parameters,

µX̂j
=

�T
t=1 �j(t)(xt � Âjyt)�T

t=1 �j(t)
. (2)

Âj =

�T
t=1 �j(t)(xt � µX̂j

)yT
t

�T
t=1 �j(t)ytyT

t

. (3)

The estimation of the linear transformations Âj is also con-
strained to models in the /a: e: i: o: u:/ subtree. For the acous-
tic means µXj of all other phones, as well as for all (acoustic
and visual) variances, we used the un-transformed version as in
Equation (1).

In contrast to [9], the mean of all acoustic leafs sharing the
same transform is also shared in our implementation. This is
done by employing the tying mechanisms in HTS/HTK. Thus
different states still share the same underlying Âj regardless of
the state j. The use of the tying mechanism is explained in [12].

Thus the transformation of the visual features to the audio
features is not used to superimpose the modified trajectory on
the original audio feature trajectory but is effectively used to
generate the audio feature trajectory from the visual feature tra-
jectory. This means that without visual information, all /a: e: i:
o: u:/ phones would result in the same acoustic realization. Us-
ing this approach, we implemented a constrained audio-visual
dependency modeling system.

2.2. Parameter Generation

For parameter generation, we implemented a simplified version
of the algorithm described in [9]. Given an optimal state se-
quence, the optimal acoustic parameter sequence X

⇤
S is gener-
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ated as

X⇤
S = (WT

XU�1
X WX)

�1WT
XU

�1
X (MX + AWYYS) (4)

which results from

� log P (WXXS ,WYYS |�, q

⇤
)

�XS
= 0. (5)

The visual parameter sequences Y⇤
S are generated based on the

approximation

� log P (WYYS |�, q

⇤
)

�YS
⇡ � log P (WXXS ,WYYS |�, q

⇤
)

�YS
(6)

which results in

Y⇤
S = (WT

YU�1
Y WY)

�1WT
YU

�1
Y MY (7)

when we set the left hand side of Equation (6) to 0. Note that
this is the standard parameter generation algorithm described
in [13].

3. Visual Control using PCA Features
To simplify the control from having to modify points in 6 di-
mensional space, we apply PCA. To modify a given model,
the means are transformed into PCA space, modifications are
performed relative to the resulting PCA feature vector, and the
modified vector is projected back into the original space. No
dimensionality reduction is used in this scheme. Also, the tra-
jectory is not modified directly (e.g., by adding to the trajectory
values), but the means are changed, thus changing the gener-
ated trajectory. This ensures smooth trajectories for the duration
of the modified phone and especially at the phone boundaries.
As a side effect of the smoothing, the extent of modification is
slightly decreased, thus a larger change in the control parame-
ters is required to achieve sufficiently strong effects.

The first PCA component roughly corresponds to mouth
opening, while the second and third component can be inter-
preted as modelling rounding. Figure 4 illustrates the changes
of the marker positions resulting from changes of the first PCA
component between �1.5 and +1.5 and between �0.75 and
+0.75 for the second PCA component.

We did not carry out a formal evaluation of the effects of the
control on the visual speech motion, but synthesis of the entire
37 marker positions can be performed at the loss of some accu-
racy by calculating a linear regression from the 6 visual control
parameters to the full visual parameter space. From examples
we looked at during development, it appeared that visual syn-
thesis is still feasible using only these parameters. There is also
some loss of acoustic quality due to the simple transformation
and the incomplete explanation of acoustic features by the vi-
sual features.

Figure 5 illustrates an example outcome. In the sentence
“Ich habe ‘bomo’ gehört” (I heard ‘bomo’), the two vowels of
the nonsense word ‘bomo’ were modified visually by increas-
ing and decreasing the mean of the first PCA component, cor-
responding to increased and decreased mouth opening, respec-
tively. The bottom part of the figure shows the effect on the
distance between the upper lip and the lower lip markers. The
middle part shows the resulting spectrograms for the time seg-
ment indicated by vertical lines. The top part of the figure shows
the resulting facial marker configurations at the time points in-
dicated by small circles. Compared to the unmodified sample
(±0, center spectrogram, first formant at 287 Hz), the sam-
ples with the decreased (�1.5, left spectrogram, first formant
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Figure 4: Effects of changing the first PCA component from
�1.5 to +1.5 (left) and changing the third PCA component
from �0.75 to +0.75 (right).

at 408 Hz) and increased (+1.5, right spectrogram, first for-
mant at 605 Hz) mouth opening exhibit a clearly visible change
both in the visual trajectories as well as in the spectral power
distributions.

4. Evaluation
To evaluate the acoustic effects of the visual control, a subjec-
tive listening test with eleven subjects was carried out. We syn-
thesized ten utterances containing the nonsense words ‘bama’,
‘beme’, ‘bimi’, ‘bomo’, ‘bumu’ and ‘pata’, ‘pete’, ‘piti’, ‘poto’,
‘putu’ in the carrier sentence “Ich habe . . . gehört”, with
varying visual control parameters affecting the two vowels of
the nonsense word. The first PCA component was modified
by applying one of the three offsets �1.5, ±0, +1.5 and the
third PCA component by applying one of the three offsets
�0.75, ±0, +0.75, resulting in nine different realizations1.

Each test subject heard all 90 synthesized examples in ran-
dom order and was asked to identify what they heard as one of
the five variants of the nonsense word (either ‘bama’, ‘beme’,
‘bimi’, ‘bomo’, ‘bumu’ or ‘pata’, ‘pete’, ‘piti’, ‘poto’, ‘putu’)
or none of these. The results are given in Table 1, where the
first column gives the original vowel, the second and third col-
umn give the applied offsets for the first and third PCA com-
ponents, and the remaining columns give the identification per-
centages. These results are also visualized in Figure 6 as stacked
bar charts. For each initial vowel, the central bar corresponds to
the unmodified sample, the upper-left bar corresponds to a shift
in the upper-left direction (compare Figure 2), etc.

In most cases, there is a clear majority regarding the per-
ceived vowel and in these cases the change is consistent with
what can be expected when we consider the vowel distributions
of Figure 2. For each initial vowel, we can successfully trans-
form towards at least one other vowel. It is interesting that for
each of them there is a direction in which the listeners perceived
the original vowel more clearly, i.e. in a higher percentage of
cases. In all five cases, this direction is leading “away” from
the other vowels (Figure 2). Furthermore, we see that for /a/,
there is a fairly large number of “no match” votes (“?”) in all
nine cases. Part of this is due to acoustic artifacts (e.g., buzzing

1Examples on http://userver.ftw.at/~schabus/avsp2013vc
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Figure 5: Example outcome of modification of the first PCA
component. Bottom: Distance between the upper lip and lower
lip markers over time. Middle: spectrograms for the time seg-
ment indicated by vertical lines. Top: Facial marker configura-
tion at the time points indicated by small circles.

or distortions regarding amplitude). These artifacts can be at-
tributed to leaving the area of the PCA space in which observa-
tions are naturally occurring and thus creating artificial visual
features and inducing artificial sound.

In some examples (e.g., the one in Figure 5) we saw that
the closure between the two modified vowels was not synthe-
sized correctly in the visual domain as the smooth trajectory
generation prevented the lip movement from reaching the clo-
sure point. This could be prevented, e.g., by decreasing the
variances and thus forcing the trajectories closer to the specified
means, or by modifying the dynamic features. This also indi-
cates that PCA transformation alone does not capture all pos-
sible modifications of the underlying feature space adequately
and a different parametrization for exercising control may be
necessary.

We saw in our experiments that the offsets applied in PCA
space needed to be larger than expected (i.e., 1.5 and 0.75 in-
stead of 1.0 and 0.5) in order to properly induce changes. We
attribute part of this to the generation algorithm producing over-

Table 1: Evaluation Results: Identification percentages for each
initial vowel, modified by each of nine control offset combina-
tions.

V �1 �3 a e i o u ?

a -1.5 +0.75 0 77.3 0 0 0 22.7
a 0 +0.75 4.5 72.7 0 0 0 22.7
a +1.5 +0.75 9.1 40.9 0 0 0 50.0
a -1.5 0 22.7 36.4 0 0 0 40.9
a 0 0 63.6 0 0 0 0 36.4
a +1.5 0 72.7 0 0 0 0 27.3
a -1.5 -0.75 0 0 0 68.2 0 31.8
a 0 -0.75 4.5 0 0 54.5 0 40.9
a +1.5 -0.75 36.4 0 0 18.2 0 45.5
e -1.5 +0.75 0 27.3 72.7 0 0 0
e 0 +0.75 0 100.0 0 0 0 0
e +1.5 +0.75 0 100.0 0 0 0 0
e -1.5 0 0 0 90.9 0 9.1 0
e 0 0 0 68.2 22.7 0 0 9.1
e +1.5 0 4.5 95.5 0 0 0 0
e -1.5 -0.75 0 0 45.5 0 50.0 4.5
e 0 -0.75 0 0 13.6 0 72.7 13.6
e +1.5 -0.75 13.6 31.8 0 31.8 18.2 4.5
i -1.5 +0.75 0 4.5 86.4 0 9.1 0
i 0 +0.75 0 95.5 4.5 0 0 0
i +1.5 +0.75 0 95.5 4.5 0 0 0
i -1.5 0 0 0 95.5 0 4.5 0
i 0 0 0 31.8 50.0 4.5 13.6 0
i +1.5 0 0 81.8 4.5 9.1 4.5 0
i -1.5 -0.75 0 0 54.5 0 40.9 4.5
i 0 -0.75 0 0 40.9 0 50.0 9.1
i +1.5 -0.75 0 50.0 0 27.3 18.2 4.5
o -1.5 +0.75 0 63.6 13.6 0 13.6 9.1
o 0 +0.75 0 86.4 0 0 0 13.6
o +1.5 +0.75 4.5 86.4 0 0 0 9.1
o -1.5 0 0 0 4.5 0 90.9 4.5
o 0 0 0 18.2 0 72.7 9.1 0
o +1.5 0 72.7 9.1 0 13.6 0 4.5
o -1.5 -0.75 0 0 0 0 100.0 0
o 0 -0.75 0 0 0 27.3 72.7 0
o +1.5 -0.75 4.5 0 0 90.9 0 4.5
u -1.5 +0.75 0 0 95.5 0 4.5 0
u 0 +0.75 0 22.7 68.2 0 0 9.1
u +1.5 +0.75 0 81.8 13.6 0 0 4.5
u -1.5 0 0 0 27.3 0 72.7 0
u 0 0 0 0 22.7 0 63.6 13.6
u +1.5 0 0 27.3 4.5 9.1 50.0 9.1
u -1.5 -0.75 0 0 0 0 90.9 9.1
u 0 -0.75 0 0 0 0 90.9 9.1
u +1.5 -0.75 0 0 0 0 95.5 4.5

smoothed trajectories and part of it to the overlapping which
essentially requires us to leave ambiguous areas to create un-
ambiguous sounds.

5. Conclusion
In this paper we have shown that – similar to previous work,
where acoustic speech synthesis is controlled via articulatory
or formant features – it is also possible to achieve phonetically
meaningful transformations of acoustic synthetic speech by ex-
ercising control in terms of visual speech features, namely 3D
facial marker motion data. This can be seen as a more restrictive
setting than 3D articulatory data, because we have no informa-
tion on the position of the tongue.

For all of the selected five phones, transformations to at
least one other phone have been shown to be feasible, as de-
termined by a subjective listening test with eleven subjects. The
acoustic phone realizations resulting from changes in certain di-
rections are consistent with the distribution in visual PCA space.

Future work could explore the improvements achievable
by using a more sophisticated control model for example us-
ing combined per-state and per-context transformations. Some
improvement may also be possible by using more descriptive
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Figure 6: Visualization of the evaluation results (Table 1). For
each initial phone, the central subplot shows the classification
results for the unmodified phone. The eight surrounding sub-
plots show the classification results for the modified phones.
Colors and orientation are in line with Figure 2.

features, rather than only three markers on the lips and jaw.
Additionally, we would like to evaluate the coherence of the
modified visual and acoustic speech signals in combined audio-
visual perceptive experiments. Another interesting topic to in-
vestigate would be to combine both facial marker and articu-
latory data, requiring a synchronous multimodal corpus, which
we plan to build in the near future.
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