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Abstract

In this dissertation, new methods for audiovisual speech synthesis using Hid-
den Markov Models (HMMs) are presented and their properties are inves-
tigated. The problem of audiovisual speech synthesis is to computationally
generate both audible speech as well as a matching facial animation or video
(a “visual speech signal”) for any given input text. This results in “talking
heads” that can read any text to a user, with applications ranging from vir-
tual agents in human-computer interaction to characters in animated films
and computer games.

For recording and playback of facial motion, an optical marker-based facial
motion capturing hardware system and 3D animation software are employed,
which represent the state of the art in the animation industry. For modeling
the acoustic and motion parameters of the synchronously recorded speech
data, an existing HMM-based acoustic speech synthesis framework has been
extended to the visual and audiovisual domains.

The most important scientific contributions are on the one hand a novel
joint audiovisual approach, where speech and facial motion are generated
from a single model which combines both modalities. An analysis of the
resulting HMMs and subjective perceptual experiments show that this way
of modeling results in better synchronization between speech and motion
than separate acoustic and visual modeling, which is the most commonly
followed strategy in related work. On the other hand, average voice training
and target speaker adaptation are investigated for the visual domain. The
concept of adaptation has been one of the key factors for the popularity of
the HMM-based framework for acoustic speech synthesis. Again, objective
analysis and subjective perceptual experiments show that this concept is
also applicable to the visual domain.

In order to study these modeling approaches, suitable data collections are
required. To this end, several synchronous labeled corpora of speech and
facial motion recordings in Austrian German have been created as part of
this dissertation. The resulting data collections have been released on the
Internet for research purposes, and may turn out to be valuable resources
for the scientific community.
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Kurzfassung

In dieser Dissertation werden neue Methoden für audiovisuelle Sprachsyn-
these unter Verwendung von Hidden Markov Modellen (HMMs) präsentiert
und auf ihre Eigenschaften untersucht. Die Problemstellung der audiovisuel-
len Sprachsynthese besteht darin, computerbasiert für eine beliebige textli-
che Eingabe sowohl hörbare Sprache als auch eine damit zusammenpassende
Animation oder ein Video eines Gesichts (ein “visuelles Sprachsignal”) zu
erzeugen. Dabei entsteht ein “sprechender Kopf”, der in der Lage ist, einem
Benutzer beliebige Texte vorzulesen. Mögliche Anwendungen davon reichen
von sogenannten virtuellen Agenten in der Mensch-Maschine-Interaktion bis
zu computergesteuerten Figuren in Animationsfilmen und Computerspie-
len.

Zur Aufzeichnung und Wiedergabe von Gesichtsbewegungen wurden ein op-
tisches, Marker-basiertes Aufzeichnungsgerät für Gesichtsbewegungen bzw.
3D Animations-Software verwendet, welche dem Stand der Technik in der
Animations-Branche entsprechen. Für die Modellierung der akustischen so-
wie der Bewegungs-Parameter, die aus den synchron aufgezeichneten Sprach-
daten gewonnen wurden, wurde ein bestehendes HMM-basiertes akustisches
Sprachsynthese-System auf den visuellen und audiovisuellen Bereich erwei-
tert.

Die wichtigsten wissenschaftlichen Errungenschaften sind zum einen ein neu-
er kombiniert-audiovisueller Ansatz, bei dem Sprache und Gesichtsbewegun-
gen aus einem einzigen Modell generiert werden, das beide Modalitäten kom-
biniert. Eine Analyse der resultierenden HMMs und subjektiv-perzeptive
Experimente zeigen, dass diese Art der Modellierung zu besserer Synchroni-
sierung zwischen Sprache und Bewegung führt als separate akustische und
visuelle Modellierung. Zum anderen werden Durchschnitts-Modell-Training
und Zielsprecher-Adaption für den visuellen Bereich untersucht. Das Kon-
zept der Adaption hat wesentlich zur Popularität des HMM-basierten An-
satzes für akustische Sprachsynthese beigetragen. Auch hier zeigen eine ob-
jektive Analyse und subjektiv-perzeptive Experimente, dass dieses Konzept
auch auf den visuellen Bereich anwendbar ist.

Zur Untersuchung dieser Modellierungs-Ansätze werden entsprechende Da-

7



tensammlungen benötigt. Deswegen wurden im Zuge dieser Dissertation
mehrere synchrone, annotierte Korpora bestehend aus Aufnahmen von Spra-
che und Gesichtsbewegungen in österreichischem Deutsch produziert. Die
so entstandenen Datensammlungen wurden im Internet für Forschungszwe-
cke veröffentlicht, und könnten sich als wertvolle Ressourcen für die wissen-
schaftliche Gemeinschaft herausstellen.
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Chapter 1

Introduction

This dissertation addresses the problem of audiovisual speech synthesis, i.e.,
the problem of computationally generating both audible spoken language
(speech), as well as corresponding facial movement (“visual speech”) for a
given textual input (as illustrated by Figure 1.1). Speech synthesis in the
acoustic domain has been an active research area for more than 50 years, and
synthetic voices have become commonplace in application fields like car nav-
igation devices, smartphones, public transport announcements, automated
telephone services, and assistive technologies. Adding a speaking face via
visual speech synthesis can be appropriate in speech-based human-computer
interfaces because of improved intelligibility and increased attention and en-
gagement. Furthermore, flexible computer-controlled talking characters are
useful in the entertainment industry for the creation of animated films and
computer games. Visual speech synthesis is younger and less settled than its
acoustic counterpart, but nonetheless a well established research field which
has seen much progress since its beginnings.

Often, the techniques used for visual speech synthesis are the same or similar
as in acoustic synthesis, and this is also true for the work presented here.
In particular, an approach based on Hidden Markov Models (HMMs) has
received much scientific attention since the early 2000s in acoustic speech
synthesis, and it has already been applied in various ways for visual speech
synthesis as well. In this approach, a speech model is “learned” from a
collection of speech recordings during a “training” phase, and the resulting
model can then be used at synthesis time to generate speech for any new
input sentence. In this dissertation, the HMM-framework is applied for both
acoustic and visual speech synthesis, for two reasons: first, this allows for
true joint modeling of the two modalities in a single multi-modal model, and
second, there are interesting “advanced” modeling techniques like speaker
adaptation which have played an important role for the success of the HMM-
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audiovi
sual

speech

synthes
is

"The weather is
sunny today."

Figure 1.1: An audiovisual speech synthesis system takes text as input, and
produces speech and matching facial movement as output.

framework in the acoustic domain, but which have not been investigated
before for the visual domain.

For the research in this dissertation, the decision was made to represent the
visual speech signal using a 3D head model, rather than using video record-
ings, for example. Visual speech synthesis is therefore realized as generating
motion control parameters for a 3D head model. The control parameters
thereby consist of the movement of a number of facial feature points. On the
one hand, this allows the collection of recordings from human speakers by
tracking markers that are glued to their faces. On the other hand, it defines a
speaker-independent control parameter set, thus allowing experiments using
data from multiple speakers, such as speaker adaptation.

Because speech synthesis is a subfield of signal processing, it has traditionally
been assigned mostly to electrical engineering. With increasing computa-
tional power and the trend towards data-driven methods, other elements
that are somewhat closer to computer science became important, like com-
binatorics (for handling the large number of possible combinations resulting
from a large collection of data), statistical machine learning and computa-
tional linguistics. For adequate modeling of speech, an understanding of
some concepts from phonetics and linguistics are necessary. Visual speech
synthesis additionally brings computer graphics and/or image processing,
and even computer vision (for recording speakers’ facial movements) into
the picture. Finally, human perceptional factors need to be considered,
since the aim of this kind of technology is to produce speech that is convinc-
ing to human viewers/listeners. Audiovisual speech synthesis is therefore a
highly interdisciplinary field, which this dissertation tries to account for by
touching on all of the mentioned topics (to varying degree).
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1.1 Project Background

1.1 Project Background

The research in this dissertation was conducted as part of the project Adap-
tive Audio-Visual Dialect Speech Synthesis (AVDS), carried out at the For-
schungszentrum Telekommunikation Wien (FTW) (Telecommunications Re-
search Center Vienna) in Vienna, Austria. FTW is a non-profit research
institution that focuses on applied research in cooperation with academic
and industrial partners, but also carries out basic research projects (like
AVDS), in the field of information and communication technology. The
AVDS project was funded by the Fonds zur Förderung der wissenschaftlichen
Forschung (FWF, Austrian Science Fund) under the project number P22890-
N2. Project manager and principal investigator was Michael Pucher of
FTW, the project lasted from January 2011 to December 2014. During this
time, the author of this dissertation was employed as a full-time researcher at
FTW, working on AVDS and several other FTW research projects. Within
AVDS, FTW collaborated with Sylvia Moosmüller and others of the Acous-
tics Research Institute of the Austrian Academy of Sciences.

Speech technology has been a permanent research topic at FTW since the
center’s foundation in 1998, beginning with the collection of an Austrian
German telephone speech corpus (M. Baum et al., 2000). The first work
on speech synthesis at FTW was carried out by Michael Pucher and others
(Pucher et al., 2003) in the “Speech & More” project (1999–2003), which
was led by Georg Niklfeld. The first FTW research project concentrating on
synthesis was Viennese Sociolect and Dialect Synthesis (VSDS) from 2007
to 2009, in which the author of this dissertation worked on his master’s
thesis (Schabus, 2009). VSDS was also led by Michael Pucher and can be
seen as the direct predecessor project to AVDS. In parallel to AVDS, two
further projects focusing on speech synthesis have been running at FTW,
Acoustic Modeling and Transformation of Varieties for Speech Synthesis
(AMTV) and Speech Synthesis of Auditory Lecture Books for Blind Children
(SALB), to both of which the author of this dissertation has made some
contributions.

1.2 Scientific Contributions

In this dissertation, new methods are developed for modeling visual and
audiovisual speech using the HMM-based framework, making the following
scientific contributions:

• Joint audiovisual modeling, using a single combined model for both
modalities, is proposed as a simple but effective approach for ensuring
synchronization between generated speech and facial motion. The dif-
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ferences to several strategies of separate acoustic and visual modeling
are analyzed objectively and subjective evaluations show a noticeable
improvement in synchrony. Importantly, the quality of the generated
acoustic speech is not negatively affected by combined modeling.

• Average voice training and target speaker adaptation, an important
advantage of the HMM-based speech synthesis framework, have been
applied to visual speech parameters, showing that this concept is also
applicable to this domain. As for acoustic speech synthesis, the adap-
tive approach is able to outperform the single-speaker approach, when
the amount of training data from the target speaker is small.

• A feature extraction method for the visual data based on principal
component analysis is proposed and shown to result in features that
are not only well suited for statistical modeling, but also for finding
a reduced space that is still general enough to “contain” new target
speakers, making the features suitable also for speaker-adaptive mod-
eling.

• A pipeline from recording via feature extraction and model training to
synthesis and final animation has been developed and is described in
detail. For the modeling part, an existing HMM-based framework for
acoustic speech synthesis was extended to include the visual modality.

• Several synchronous multi-modal speech corpora have been created,
using marker-based optical facial motion tracking for the visual modal-
ity, studio-quality audio for the acoustic modality, and (for part of
the data) electromagnetic articulography for tongue motion track-
ing. Data from eleven speakers in Standard Austrian German, from
eight speakers in two different Austrian dialects, and from one speaker
speaking at normal, slow and fast speaking rate has been recorded,
preprocessed and manually refined. All resulting data has already
been or will be released to the research community on the Internet.

1.3 Publications

Parts of this dissertation have been previously published in the journal ar-
ticles and conference papers listed below, each of which needed to pass a
peer-reviewing process with at least two reviewers assessing the quality of
the submitted manuscript. All conference papers were also presented as oral
or poster presentations at the respective conference by the author, except
for paper number 3, which was presented by Michael Pucher. The relation
between these publications and this dissertation will be indicated at the
respective places.
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Journal Articles

1. D. Schabus, M. Pucher, and G. Hofer (Apr. 2014a). “Joint Audiovisual
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Interactive Techniques. Vancouver, BC, Canada, 8:1–8:1. url: http:
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1.4 Overview of This Dissertation

The remainder of this dissertation is organized as follows. Chapter 2, ti-
tled Audiovisual Speech Synthesis Background, discusses the problems of
acoustic and visual/audiovisual speech synthesis and the most important
approaches to solving them. Especially for the visual/audiovisual domain
it attempts to provide a broad overview over related work. Chapter 3, ti-
tled Speech Synthesis Using Hidden Markov Models, is intended to give an
understanding of how speech synthesis using HMMs works, focusing on the
audio-only case. Chapter 4, titled Developing an Audiovisual Speech Syn-
thesis Pipeline, gives all details about the visual recordings, visual features
and how an existing acoustic HMM-based speech synthesis system was ex-
tended to visual and audiovisual modeling. Chapter 5, titled Audiovisual
Speech Corpora, describes the speech data collections created. Chapter 6,
titled Synchronization of Speech and Motion, describes and compares dif-
ferent methods of synchronizing speech and facial motion generated from
HMMs, and argues for a combined single model for both modalities. In
Chapter 7, titled Speaker-Adaptive Audiovisual Speech Synthesis, the con-
cept of average voice training and target speaker adaptation is applied to
the visual domain. Finally, Chapter 8, titled Conclusion, summarizes the
most important findings and gives an outlook to possible future research
related to this body of work.
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Chapter 2

Audiovisual Speech Synthesis
Background

The aims of this chapter are to define central terminology and concepts, to
motivate the research presented in the following chapters and to provide an
overview over related work. First, speech synthesis in general terms and
concerning the acoustic modality is discussed. Then, the problem of speech
synthesis is extended to the visual domain, and several approaches to this
multi-modal problem are presented.

2.1 Speech Synthesis in the Acoustic Domain

In the author’s master’s thesis (Schabus, 2009), speech synthesis was intro-
duced using the following two paragraphs:

The main means of human communication is speech. To en-
hance human-machine interaction, computers should be capable
of speech communication. Among other things, this requires
computers to be able to produce an acoustic speech signal for a
given input text, i.e., pass information to a human user through
“speaking”. The scientific field of speech synthesis deals with the
development of Text-To-Speech (TTS) systems that satisfy this
requirement.

Besides the attempt to make human-machine communication
more natural, speech synthesis has applications wherever visual
output has disadvantages. For example, acoustic output is suit-
able for a user steering a vehicle or aircraft (or other activities in-
volving eyes and hands), it can be used over the well-established
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Text
Phonological

Representation
Phones, Stress, ...

Transcription
Linguistic Processing

Speech
Signal

Phono-Acoustic Stage
Signal Generation

voice-independent voice-dependent

Figure 2.1: Separation of a speech synthesis system into a voice-independent
and a voice-dependent part (figure after Pfister and Kaufmann, 2008).

telephone network (for information, reservation or ordering ser-
vices), and it easily attracts our attention (for public announce-
ments, alarm systems, etc.). Furthermore, speech synthesis has
long been a vital assistive technology for people with visual im-
pairment or other reading difficulties (e.g., screen readers), as
well as for people with speech impairment (e.g., voice output
communication aids).

More elaborate and complete introductions to speech synthesis can be found
in the books of Dutoit (1997), Furui (2001), or Pfister and Kaufmann (2008),
for example, but the above two short paragraphs already cover several im-
portant aspects. One key point is that the input to a TTS system is text
and hence discrete and symbolic, whereas the output is a continuous speech
signal which has many concrete properties that are not part of the input,
like voice characteristics. Pfister and Kaufmann (2008) therefore divide TTS
systems into two parts along this border of text-related versus signal-related,
as illustrated in Figure 2.1.

The first part (transcription) is responsible for translating the input text into
a phonological representation that is still purely symbolic, but gives specific
and complete information on how to pronounce the input sentence(s). To
do so, this part usually employs a pronunciation dictionary and a collection
of letter-to-sound rules to determine the sequence of speech sounds (phones)
and which syllables to stress. Additionally, it may produce information on
intonation, sentence stress, and phrasing, based on a syntactic analysis of
the sentence, on the type of utterance (statement, question, exclamation),
and other things that can be derived from text.

The second part (called the phono-acoustic stage by Pfister and Kaufmann,
2008) takes the phonological representation produced by the transcription
part as input and generates an appropriate speech signal for it. There are
several possible ways to achieve this, some of which will be discussed shortly,
but they all have in common that they produce speech in a certain voice,
with all its specifics, such as speaker identity, gender, approximate age,
loudness, speaking rate, regional and/or social language variety, etc. The
first part on the other hand is independent of the voice used later, in fact it

24



2.1 Speech Synthesis in the Acoustic Domain

is even independent of the way the phono-acoustic stage is realized.

Several approaches have been developed for the phono-acoustic stage in the
second half of the 20th century. The earlier among them are covered, e.g.,
by Dutoit (1997), Furui (2001), and Pfister and Kaufmann (2008). Here,
only the two methods prevalent today shall be discussed: Speech synthesis
based on unit selection and concatenation, and speech synthesis based on
parameter statistics, the latter being the method applied in the research for
this dissertation. Both of them, as well as hybrid systems which combine
the two methods, have been under active research from the 1990s until
today.

2.1.1 Speech Synthesis via Waveform Concatenation

The basic idea of unit selection systems (Sagisaka et al., 1992; Hunt and
Black, 1996) is to concatenate speech signal cut-outs (units), which are taken
from a collection of recorded utterances, thus forming new combinations, to
synthesize new utterances. The assumption is that appropriate units for any
utterance are available, which is true if the amount of collected recordings is
large enough. The units in the system described by Hunt and Black (1996)
are phones, but differently sized units are also possible. To synthesize a
new utterance, appropriate units are selected from the collection based on
the minimization of a cost function, using the Viterbi Algorithm (Viterbi,
1967). After transcription of the input text, the phonological representation
consists of a sequence of symbolic target units t1:n = (t1, ..., tn), for each of
which a concrete speech unit ui from the recording collection needs to be
selected. These selected units u1:n = (u1, ..., un) are then concatenated to
form the result. The cost function consists of a target cost term, expressing
how well a candidate unit from the collection satisfies the requirements of
the target unit (by comparing speech units to a symbolic unit), as well as a
concatenation cost term, which expresses how well two consecutive candidate
units combine (by comparing two speech units).

The target cost between a candidate unit ui and the required target unit ti
is defined as

C(t)(ti, ui) =
p∑
j=1

w
(t)
j C

(t)
j (ti, ui), (2.1)

which is a weighted sum of the differences of the candidate unit and the tar-
get unit regarding p phonetic and prosodic features. Such sub-costs express
phonetic and prosodic properties of the unit in question, as well as of its
context (the preceding and succeeding units, e.g.). Hunt and Black (1996)
report to have used 20–30 such features.
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The concatenation cost between two successive candidate units ui−1 and ui
is defined as

C(c)(ui−1, ui) =
q∑
j=1

w
(c)
j C

(c)
j (ui−1, ui), (2.2)

which is also a weighted sum of q sub-costs, which in this case express
discontinuities at the point of concatenation. Hunt and Black (1996) used
cepstral distance, difference in power and difference in pitch, i.e., q = 3. For
a candidate sequence u1:n, the total cost is then the sum of all n target costs
plus the sum of all n− 1 concatenation costs:

C(t1:n, u1:n) =
n∑
i=1

C(t)(ti, ui) +
n∑
i=2

C(c)(ui−1, ui). (2.3)

For the final result, the unit sequence û1:n that minimizes this total cost is
found via dynamic programming, and the units are concatenated to produce
the output signal, i.e.,

û1:n = argmin
u1:n

C(t1:n, u1:n). (2.4)

Different unit selection systems differ mainly in what features are used in
the cost functions, and how the weights for them are chosen or computed.
By their nature, concatenative systems strongly rely on the quality of the
speech data collection. Furthermore, the amount of data for a high-quality
voice needs to be quite large, and this large amount of data is required at
run-time. The very high quality of synthetic speech that can be achieved
with the unit selection technique has made it common in commercial TTS
systems (Breen and Jackson, 1998; Donovan and Eide, 1998; Beutnagel et
al., 1999; Coorman et al., 2000).

2.1.2 Statistical Parametric Speech Synthesis

In statistical parametric speech synthesis (Zen et al., 2009; Tokuda et al.,
2013), the produced speech signal does not (directly) contain any recorded
speech. Instead, this approach to the phono-acoustic stage task relies on
an analysis–re-synthesis technique. From a recorded speech utterance, a
sequence of speech parameters can be extracted using the analysis procedure,
and the re-synthesis procedure can be used to turn this parameter sequence
back into a speech waveform again. Using the extracted parameter sequences
of a collection of recorded utterances as training data, statistical models for
these speech parameters are trained, typically using a maximum likelihood
criterion to optimize the model parameters for the given data. To synthesize
a new utterance, the most probable speech parameter sequence for the text

26



2.1 Speech Synthesis in the Acoustic Domain

input is generated from the statistical models, and finally the re-synthesis
procedure produces the result waveform from this sequence.

Although any generative model could be used in this setup, HMMs are
typically used, also in this dissertation. Chapter 3 discusses HMM-based
speech synthesis in detail, in the following only a few relevant points shall
be made.

HMMs became widespread in speech recognition in the 1970s and 1980s
(Baker, 1975; Jelinek et al., 1975; Poritz, 1982; Juang and Rabiner, 1985),
and rapidly gained popularity in speech synthesis in the 1990s, largely due
to a series of publications from the Nagoya Institute of Technology and the
Tokyo Institute of Technology (Tokuda et al., 1995; Masuko et al., 1996;
Yoshimura et al., 1998; Tokuda et al., 1999; Yoshimura et al., 1999), as well
as to the release of the HMM-based Speech Synthesis System (HTS)1 in
2002 by the same people (Zen et al., 2007a). The HTS system is actually
an extension of another system, the Hidden Markov Model Toolkit (HTK)2

(Woodland et al., 1994; Young et al., 2006), which was primarily designed
for speech recognition.

Similar to most speech recognition and also unit selection systems, HMM-
based speech synthesis systems typically use phones as modeling units, i.e.,
an utterance like “There was a change now” is essentially represented as
a sequence of phones, e.g., (dh, eh, r, w, aa, z, ax, ch, ey, n, jh, n, aw). Each
element of the sequence usually holds a phone symbol (e.g., ey to represent
the diphthong in the word “change”), its phonetic context (e.g., the ey is
preceded by an ax and a ch, and succeeded by an n and a jh), and addi-
tional information like whether or not the corresponding syllable is stressed,
etc. As this representation is intended as an annotation of recorded (time-
variant) speech signals, the begin and end times are also normally given
for each element. These phone borders are either manually labeled, or de-
termined automatically via forced alignment (as described in Section 3.2)
or other automatic alignment methods, possibly followed by manual correc-
tions. From all the phone speech signal segments defined by these borders
on the training data (collection of recorded utterances), a collection of phone
HMMs is trained, where—in a simplified view—each HMM captures the av-
erage sound of all signal segments from the training data that were used to
train this specific HMM.

As already mentioned, these phone HMMs are not trained on the raw speech
waveform itself (a one-dimensional signal sampled at, e.g., 44 100Hz), but on
a parametric representation of it, which results from the analysis procedure
of the analysis–re-synthesis technique. This representation consists of de-

1http://hts.sp.nitech.ac.jp
2http://htk.eng.cam.ac.uk
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2 Audiovisual Speech Synthesis Background

correlated higher-dimensional features at a lower sampling rate; for example,
the 150ms ey segment is represented by 23 41-dimensional vectors rather
than by 6615 scalar values, i.e., the sampling rate changes from 44 100Hz
to 200Hz. These feature vectors then serve as training data for the phone
HMMs.

In order to synthesize an utterance given as text, the phonological represen-
tation (in particular, the phone sequence) is determined by a transcription
module, such that the appropriate phone HMMs can be found and con-
catenated to an utterance HMM. From this, the most probable sequence of
feature vectors is computed via a trajectory generation algorithm (Tokuda
et al., 1995). Finally, this sequence is turned into a speech signal using the
re-synthesis procedure.

Compared to unit selection methods, HMM-based speech synthesis has sev-
eral advantages (Zen et al., 2009; Tokuda et al., 2013), mainly due to the
fact that unit selection systems are inherently limited to produce speech that
sounds like the recorded material. In an HMM-based system, on the other
hand, voice characteristics, speaking styles, emotions, etc. can be changed
by modifying the parameters, for example by using model adaptation (dis-
cussed in Section 3.5) or interpolation (e.g., Yoshimura et al., 2000). The
parametric approach thus offers more flexibility. Furthermore, unit selection
requires large amounts of speech recordings for high quality voices. This is
generally also true for the HMM-based approach, however, using the adap-
tation technique it is possible to train an “average voice” on a large amount
of data from multiple speakers and then adapt the models towards a target
speaker with only a small amount of data from that speaker. Like HMM-
based synthesis in general, also the idea of speaker-adaptation rooted in the
speech recognition field. Finally, HMM voices require significantly less disk
storage and memory space than unit selection voices, because for synthe-
sis only the statistical models are needed, whereas a unit selection system
requires the entire collection of recordings at run-time.

The main disadvantage of HMM-based speech synthesis in comparison to
unit selection is the lower achieved quality of synthesized speech. Zen et
al. (2009) list three quality degrading factors: First, already analysis and
re-synthesis of recorded speech exhibits a certain “buzziness” of the speech
signal, due to the simple excitation model used (basically, a pulse train for
voiced parts, and white noise for unvoiced parts). Second, in the statistical
modeling of the parameters, several simplifying assumptions are made which
do not really hold for real speech, e.g., piece-wise constant statistics within
an HMM state. And third, the statistical averaging over observed instances
in the training data to estimate the HMM parameters creates the problem of
over-smoothing, resulting in a loss of detailed characteristics and a certain
“muffledness” of the generated speech.
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Nevertheless, HMM-based speech synthesis system have reached intelligibil-
ity scores similar to natural speech in the Blizzard Challenges (e.g., Karaiskos
et al., 2008), a competition held every year since 2005 where different groups
compare their speech synthesis systems built on the same data via subjective
listening tests.

2.1.3 Hybrid HMM/Unit Selection Methods

Several systems have been developed which combine HMM-based speech
synthesis and unit selection into “hybrid” systems, aiming for new concate-
native synthesizers that use the statistical models to guide the selection
of units. Some systems use the speech parameters predicted by HMMs as
targets in the unit selection algorithm, thereby simplifying the target cost
function (Kawai et al., 2004; Hirai and Tenpaku, 2004; Rouibia and Rosec,
2005; Yang et al., 2006), others use the likelihoods of candidate units, which
are determined using HMMs, in the (target and/or concatenation) cost func-
tions (X. Huang et al., 1996; Hon et al., 1998; Okubo et al., 2006; Ling and
R.-H. Wang, 2007; Ling et al., 2007). Hybrid systems are able to reach a
very high quality in synthetic speech (e.g., in the Blizzard Challenge 2012,
King and Karaiskos, 2012), but it should be noted that not all advantages
of the statistical parametric method can be retained, e.g., the flexibility in
changing voices and the small footprint.

2.2 Speech Synthesis in the Visual Domain

After the overview over modern techniques for acoustic speech synthesis, we
now turn to the visual domain. From a communications point of view, hu-
man speech in the acoustic domain is a “message” originating in the speaker’s
brain, “encoded” as a time-variant signal produced by the human vocal ap-
paratus, transmitted as sound waves via the air, captured by the human
ear and processed by the listener’s brain, as described, e.g., by Coker et al.
(1963) and illustrated in Figure 2.2. Switching to the visual domain, we
might analogously look at human speech as an (additional) signal produced
by the movement over time of the (visible parts of the) vocal apparatus,
transmitted via light rays that originate from some light source, which are
reflected from the surface of the speaker’s face and which are finally cap-
tured by the viewer’s eyes. Leaving aside facial expressions, eye and eyebrow
movement, and other truly complementary “channels”, one might argue that
the visual signal of the articulator movement is merely a “byproduct” of the
acoustic shaping of the speech sounds. For example, the rounding of the
lips during production of the word “do” is purely acoustically motivated.
However, it is intuitively clear that seeing the articulator movement of a
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Figure 2.2: The “Speech Chain” (image from Coker et al., 1963).

speaker can help to disambiguate speech and thus improve intelligibility
(especially under difficult acoustic conditions, see, e.g., Sumby and Pollack,
1954). Also, the presence of a face representing a speaking person (e.g.,
in an animated film or computer game) with speech accompanied by inap-
propriate articulator movement creates an undesirable inconsistency for the
viewer. Depending on the situation, this “byproduct” can be of consider-
able importance. In any case, it is beyond question that the acoustic speech
signal and the visible articulator movement originate from the same process
and are very closely related.

On the technological side, we have microphones and loudspeakers for cap-
turing and producing sound waves, and cameras and displays for capturing
and reproducing visible light. However, a different, more animation-inspired
viewpoint on visible speech motion is also possible: one that regards the fa-
cial motion itself as the relevant signal, not the light reflected from the
surface of the moving face. If we think about a speech-capable humanoid
robot, for example, which we want to be able to produce an appropriate
visual speech signal when it speaks to a human user, then the robot’s con-
trol unit would not need to take into account the lighting conditions or the
human’s viewpoint; it would not have to decide which color and brightness
values to generate for an appropriate visual speech signal; it would simply
need to move the robot’s face “correctly”, and all other things mentioned
would follow from the laws of physics. This viewpoint on the visual speech
signal is also valid in virtual three-dimensional worlds as commonplace in
animated films, computer games, and the like, where speaking characters
appear embedded in specific surroundings, with specific (virtual) lighting
and seen from a specific viewpoint within the virtual space. In order to
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have the flexibility to freely change such conditions as surroundings, light-
ing, viewpoint, etc., we need the visual speech generation algorithms either
to take all of these conditions into account (simultaneously!), or we need the
algorithms to be independent of these conditions. The latter is much easier
to achieve, namely by creating visual speech in terms of facial motion, i.e.,
motion and deformation of the 3D character over time, and let the “physics”
of the 3D scene rendering take care of the rest.

These two views on the visual speech signal (filming the visual speech signal
vs. modeling and recreating it via rendering) give rise to two quite different
approaches to the problem of synthesizing new visual speech signals. The
first one operates on conventional video data, which can also be seen as image
sequences, or as pixel intensity values changing over time. For recording
the training data (in the case of a data-driven method), a conventional
video camera can be used, and the system’s output will also be a video.
For the other approach, a way of recording speech motion in 3D and a
way of “applying” such data to a 3D head model are required. Several
possibilities have been proposed, but the end result will always be a motion
and deformation sequence of the 3D head model, which can then be rendered
as a video captured by a virtual camera, if necessary. The following two
subsections present some relevant work for each of the two approaches. More
elaborate introductions to (audio-)visual speech synthesis and surveys of
developed methods can be found in the overview paper of Bailly et al. (2003),
the PhD dissertation of Beskow (2003), and in the books of Parke andWaters
(1996), Deng and Neumann (2008) and Bailly et al. (2012).

2.2.1 Visual Speech Based on Image Sequences

The general idea of most image-based visual speech synthesis systems is
to assemble video frames taken from a collection of recorded footage of
a speaking person to create new videos of that person speaking arbitrary
new utterances. Often, this includes a position normalization step and a
segmentation of the face into regions which are then treated separately. The
other parts of the frame can then be treated as background video, for which
no modification is required, and onto which the synthesized sequences of the
foreground regions can be pasted.

In their “Video-Rewrite” system, Bregler et al. (1997) replace just the mouth
region with a new image sequence selected from 8 minutes of recordings
based on so-called tri-phones: for each phone in the new utterance, an image
sequence is taken from the recordings that contains the same phone and also
has the same preceding and succeeding phone, i.e., by considering a context
of three phones’ length. Figure 2.3 illustrates their face decomposition.3 A

3Demonstration videos for “Video-Rewrite” are available at http://mrl.nyu.edu/
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Figure 2.3: Separation into mouth region and background in “Video
Rewrite”, where the border of the region warps according to the automati-
cally detected mouth and chin motions (image from Bregler et al., 1997).

Figure 2.4: Segmentation of the face into several parts for a concatenative
image-based system (image from Cosatto, 2002).

more complex segmentation of the face was applied by Cosatto and Graf
(2000) and Cosatto (2002), as shown in Figure 2.4. Their system was also
developed further by Cosatto et al. (2000) and F. J. Huang et al. (2002) to
apply the unit selection technique (cf. Section 2.1.1).

Instead of relying on the recorded data to contain every required frame, the
system of Ezzat et al. (2002) also creates new frames using image morphing.
Their system analyzes the available video data to automatically determine a
set of key frames and morphing parameters, using the principal component
analysis (Pearson, 1901; Shlens, 2014) and optical flow (Horn and Schunck,
1981) techniques. Figure 2.5 illustrates their system.4

~bregler/videorewrite/.
4Example videos for “Mary 101” are available at http://people.csail.mit.edu/
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Figure 2.5: The image-based system “Mary 101”. Top: Example output
frames of the system, where the mouth region contains generated images,
which are pasted into a background video with natural head and eye mo-
tion. Bottom: Comparison of original images from the corpus (top row)
to corresponding system-generated images through morphing (bottom row).
Images from Ezzat et al. (2002).

Theobald et al. (2002) proposed to train a shape and appearance model on
video data for visual speech synthesis, where shape is defined as the position
of tracked facial feature points and appearance as the images of the training
data videos after shape normalization. They subsequently extended their
system to 2.5D, meaning that the generated image sequence is applied as a
dynamic texture map to a 3D face model, which deforms in two dimensions
but not in the third, because the shape model computed from image data
contains no depth information (Theobald et al., 2004). Figure 2.6 shows
example frames from their system.5

The HTS working group has proposed an image-based visual speech syn-
thesis system based on their HMM speech synthesis system (Sako et al.,
2000). After applying Principal Component Analysis (PCA) to the pixel
data of image sequences showing just the mouth region, phone HMMs were
trained using the PCA-projected data as observation feature vectors. Acous-
tic speech is generated from a separate set of models; to synchronize the two
outputs, the phone boundaries generated by the acoustic model are used for
lip image synthesis. Figure 2.7 shows an example frame.6

tonebone/research/mary101/results/results.html.
5Demonstration videos available at http://www2.cmp.uea.ac.uk/~bjt/research/

talking/demos.html.
6Demonstration video at http://www.mmsp.nitech.ac.jp/~sako/avi/sample1.avi.
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Figure 2.6: Illustration of the image-based system by Theobald et al., 2004.
The top row shows images extracted from a recorded video sequence not
used in training; the bottom row shows the corresponding output generated
by the system (images from Theobald et al., 2004).

Figure 2.7: A mouth image resulting from PCA coefficients that were pre-
dicted from HMMs (video frame extracted from supplementary material
published with Sako et al., 2000).

L. Wang et al. (2010) proposed an image-based visual speech synthesis sys-
tem using a hybrid HMM/unit selection approach (cf. Section 2.1.3): First,
audiovisual HMMs are trained to map acoustic to visual features.7 Then,
to generate new lip motion videos for a given audio speech sample (which
may have been generated by a separate TTS module), a corresponding se-
quence of visual features is predicted from the HMMs, and finally an image
sequence from the original database is selected based on these predictions, as
illustrated in Figure 2.8. They refined their system to make use of the quite
recent minimum generation error training procedure (L. Wang et al., 2011b),
and extended their system to 2.5D by applying a dynamic texture to a static
3D head model (L. Wang et al., 2011a), as illustrated in Figure 2.9.8

7Concretely, Mel-Frequency Cepstral Coefficients (MFCCs) (Davis and Mermelstein,
1980) to image PCA features.

8Demonstration videos available at http://research.microsoft.com/en-us/people/
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Figure 2.8: A sequence of mouth images that was predicted from HMMs
(top) is used to guide the search for natural mouth images in the recorded
collection (bottom). Image from L. Wang et al. (2010).

2.2.2 Visual Speech Based on 3D Head Model Deforma-
tion

The image-based systems presented in the previous subsection are capable
of delivering impressive results, and they are ready to be applied in certain
application fields, like synthesized newscasters, announcers, language tutors,
virtual agents etc. However, for other applications such as animation films
and computer games, they lack flexibility: The appearance of the speaker
is given and fixed, but often it is desirable to have a different speaker (or
an animal, a fantasy character, even an object) in the result. The viewing
angle, field of view, lighting and background are also given and fixed, but it
might be required to dynamically modify all of these. Even if some of the
presented methods try to overcome the viewing angle limitation by applying
a dynamic texture to a 3D face surface, this does not completely alleviate
the shortcomings. The shading of the face cannot honor the specific lighting
conditions defined by the concrete surroundings of a given 3D scene while the
face deforms during articulation. Furthermore, the integration of a photo-
realistic face into an otherwise 3D-rendered world of an animated film or
computer game can be problematic.

These problems can be avoided by choosing a model-based approach to
visual speech synthesis. Typically, the surface of the face is represented by

lijuanw/.
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2 Audiovisual Speech Synthesis Background

Figure 2.9: Simple 3D face model as wire-frame (top left) and with texture
image applied (bottom left). Example frames with varying texture but static
underlying 3D model (right). Images from L. Wang et al. (2011a).

a mesh of polygons in 3D space (in the same way as any other objects in the
respective scene) and speech articulation (and other animation) is realized
by moving the vertices of the mesh over time. The resulting dynamic 3D
scene is then rendered repeatedly at equidistant points in time, resulting in
an image sequence (video). During rendering, virtual lights placed in the
scene, the position (and motion) of the virtual camera, surface materials
and textures, and the respective models associated with these concepts (the
rendering “physics”) play an important role. Nevertheless, these topics from
the field of computer graphics shall not be discussed here; for our purposes
it is sufficient to assume such a computer graphics pipeline to be in place
and to instead focus on the deformation of the 3D models alone.

It is worth noting that the model-based approach has been developed signif-
icantly earlier than the image-based approach. A compact control model for
a not too fine-grained 3D mesh can result in a very efficient procedure for
facial animation, tractable also on computers with much less computational
power than what is commonplace today.

Groundbreaking work in this area dates back to the 1970ies. Frederick Parke
created polygonal head representations by painting the polygon topology
onto a person’s face, and then reconstructing the 3D coordinates of the ver-
tices by measuring their distances in multiple photographs, a method called
photogrammetry, which is illustrated in Figure 2.10. These head models
were then animated using key shape interpolation (Parke, 1972a; Parke,
1972b) and later using a parameter model combining interpolation, trans-
lation, rotation and scaling of various facial features (Parke, 1974; Parke,
1982). The parameters were chosen and refined manually, by studying video
recordings and estimating the parameters to match the motion induced on
the 3D head to the articulation seen in the video. Figure 2.11 shows example
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2.2 Speech Synthesis in the Visual Domain

Figure 2.10: Reconstruction of a face in 3D by photogrammetry. The lines
painted on the face facilitate establishing correspondences between multiple
images, and also define the polygon topology of the 3D model (images from
Parke, 1974).

Figure 2.11: An early head model shown as wire-frame drawing (left) and
as renderings with texture and shading, showing different facial expressions
(right). Images from Parke (1982).

frames.9

Several research groups have created talking heads directly building on
Parke’s work, among them the Perceptual Science Lab of the University
of California at Santa Cruz (UCSC) (Cohen and Massaro, 1993; Massaro,
1998; Cohen et al., 1998) and the Department of Speech, Music and Hearing
of the Royal Institute of Technology (KTH) in Stockholm (Beskow, 1995;
Beskow, 2004; Beskow, 2003), both of which have made many contributions
to the field.

Parke’s control model was modified by Pearce et al. (1986) to include ad-
ditional speech-related control parameters, as well as to operate on input
phoneme sequences. The resulting system was then further extended by

9An example video can be seen at http://www.youtube.com/watch?v=SPMFhcC4SvQ.
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2 Audiovisual Speech Synthesis Background

Figure 2.12: Talking head models based directly on the model from Parke
(1974). From left to right: “Baldi” from UCSC and “August” and “Kattis”
from KTH (images from Cohen et al., 1998 and Beskow, 2003).

Cohen and Massaro (1993) to include a simple tongue representation and to
use dominance functions for addressing the problem of coarticulation, i.e.,
visible influences of neighboring phones on each other. A realistic palate,
teeth and an improved tongue model based on 3D ultrasound data were sub-
sequently added to this model (Cohen et al., 1998). Figure 2.12 (left) shows a
frame from this system’s output.10 In order to directly map acoustic features
derived from speech recordings to facial control parameters, Massaro et al.
(1999) trained an artificial neural network on a corpus of parallel acoustic
and visual parameter data. This data consisted of audio recordings of 400
isolated words for the acoustic part, and parameter sequences generated by
their rule-based system, given the phoneme sequence and temporal borders
of the audio recordings, for the visual part. Note that in this setup, no visual
recordings were used. A later study, however, used visual recorded data of
two different kinds. Cohen et al. (2002) used on the one hand an optical
3D motion tracking system (Optotrack) for recording speech dynamics and
on the other hand a 3D laser scanner for creating an accurate (static) head
model. The Optotrack system recorded the motion of 19 active infrared
markers affixed to the speaker’s face at 30 fps (left part of Figure 2.13, note
the cables required for active IR markers). The laser scanner provided a 3D
model of the speaker’s face, which was then used to reshape their generic
3D head model to resemble the speaker, using manually specified correspon-
dence points between the two head models (middle part of Figure 2.13).
Together with a photograph-based texture map, this results in a 3D head
more closely resembling the target speaker than the generic head model
(right part of Figure 2.13). Starting from the control parameter sequence
generated from the rule-based talking head, the parameter sequence was

10Example videos for UCSC’s “Baldi” at http://mambo.ucsc.edu/psl/international.
html.
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2.2 Speech Synthesis in the Visual Domain

Figure 2.13: Facial motion tracking using active infrared markers (left),
establishing correspondences between a 3D laser scan and the existing 3D
head model (middle), final head model after morphing and texture mapping
(images from Cohen et al., 2002).

automatically and iteratively refined such that the motion of the markers
on the 3D head model became as similar as possible to the recorded marker
motion.

Similarly, Jonas Beskow at KTH also initially worked with a rule-based
system derived from Parke’s work (Beskow, 1995; Beskow, 1997), then he
collaborated closely with Cohen and Massaro of UCSC for some time (Co-
hen et al., 1998; Massaro et al., 1999) and later also turned more towards
a measurement-based approach. Using simultaneous recordings of facial
motion using a passive marker-based optical system (named Qualisys) and
tongue motion using electromagnetic articulography (see Figure 2.14) of
Swedish speech, Beskow et al. (2003) estimated trajectories for the control
parameters of their head model which minimized the discrepancy between
the motion induced by these parameters and the recorded marker motion,
similar to Cohen et al. (2002). Control parameter trajectories produced in
this way were then used by Beskow (2004) as training data for creating
a motion model which generates parameter trajectories for given phoneme
sequences. Several modeling techniques, among them dominance functions
and artificial neural networks, were compared to each other as well as to an
audio-only condition, and to the rule-based system. A subjective evaluation
with 25 subjects showed that 1) the data-driven models did not differ sig-
nificantly from each other, 2) the data-driven models achieved significantly
better intelligibility than the audio-only condition, and 3) the intelligibility
of the data-driven models was significantly worse than the rule-based sys-
tem. This interesting last result is somewhat surprising. The study authors
ascribe it to the fact that the rule-based system was particularly tailored to
maximize clear articulation and intelligibility, and therefore tends to hyper-
articulate (Beskow, 2004). Nevertheless, the results can be seen as a success
for data-driven approaches. The same method was subsequently used for
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Figure 2.14: Hardware setup for face and tongue motion recording (left),
passive optical markers on the speaker’s face (middle) and active electro-
magnetic coils on the speaker’s tongue (right). Images from Beskow (2003).

expressive visual speech for four different emotions (Beskow and Norden-
berg, 2005), a task that would be very cumbersome for a purely rule-based
system.11

A third group whose work is of high relevance to this dissertation is GIPSA-
Lab in Grenoble, part of the French National Center for Scientific Research
(CNRS) in partnership with several universities in Grenoble. After initially
also following the route of dominance functions to control hand-crafted con-
trol parameters over time (Le Goff and Benoît, 1996), this group later ap-
proached the problem of audiovisual speech synthesis more from the direc-
tion of detailed recordings and careful analysis of speech production mea-
surement data. Badin et al. (2000) (more detailed description in Badin et al.,
2002) built a model of 3D motion and deformation for face and tongue based
on magnetic resonance imaging and conventional video with green markers
glued to the face and blue lip make-up (see Figure 2.15). They recorded
34 target articulation positions (central frames of key phones) from isolated
word and vowel-consonant-vowel utterances, yielding 3D coordinates of 64
points, i.e., 34 shapes, each 192-dimensional. From this high-dimensional
data, a low-dimensional set of parameters is determined via a “guided PCA”
procedure: Applying PCA directly to the data would result in somewhat
artificial components that are de-correlated and optimally explain the ob-
served variance, but are difficult to interpret. Instead, Badin et al. (2000)
iteratively choose arbitrary components (e.g., actually observed measures
like jaw height), calculate a linear regression and subtract the motion which
can thus be explained from the data corpus, and continue with the next
component on the residual data, and so forth. The resulting components
are more straightforward to interpret in terms of control, at the cost of sub-
optimal variance explanation and weak correlation between components (as
opposed to no correlation). With six parameters, almost 97% of the variance

11Example videos for KTH talking heads at http://www.speech.kth.se/august/
august_eurospeech2.mpg and http://www.youtube.com/watch?v=X56XvZ_SBpw.
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Figure 2.15: Articulation acquisition using magnetic resonance imaging
(left) and conventional video (right). Images from Badin et al. (2000).

Figure 2.16: From left to right: Mesh resulting from marker positions over-
laid onto a frame from the video recordings, the polygon mesh from a dif-
ferent viewpoint in 3D space, texture mapping and morphing applied to the
mesh, two of the selected parameters in extreme positions (jaw opening and
lip rounding). Images from Revéret et al. (2000).

within the key shapes could be explained. Using this kind of data, Revéret
et al. (2000) built a text-to-audiovisual speech synthesis system where facial
animation trajectories of the described components (obtained from guided
PCA) are generated according to Öhman’s numerical model of coarticula-
tion (Öhman, 1967) using the phone targets and timings provided by a TTS
system. Figure 2.16 illustrates the system of Revéret et al. (2000).12 A sim-
ilar system but with 168 recorded beads and thus a denser facial mesh was
presented by Elisei et al. (2001), applying the procedure on several speakers
in French and Arabic. Figure 2.17 illustrates this system.13

Soon after proposing their HMM-based speech parameter generation algo-
rithm and the HTS speech synthesis framework (see also Section 2.1.2), the
Tokyo/Nagoya group also applied their system to visual speech synthesis.
Masuko et al. (1998) use the ability of the HTS system to synthesize smooth

12Example video at http://morpheo.inrialpes.fr/people/reveret/ttvs/ttvs_syn.
avi.

13Example videos at http://www.isca-speech.org/archive_open/avsp01/av01_090.
html.
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2 Audiovisual Speech Synthesis Background

Figure 2.17: Acquisition of key face position with 168 beads attached to
the speaker’s face (top left). Facial mesh resulting from marker positions
and extended mesh with additional rigid (non-deforming) parts (top right).
Cylindrical texture created from photographs (bottom left). 3D head model
with cylindrical texture applied (bottom right). Images from Elisei et al.
(2001).

trajectories for lip motion parameters. From 216 phonetically balanced
Japanese words video-recorded at 60 frames per second (after deinterlacing),
they extract the inner lip contour by an automatic tracking procedure and
manual corrections. Then the mouth position and shape is parametrized by
the ten distance measures shown in Figure 2.18, plus their respective delta
parameters (difference to preceding position) as dynamic features, i.e., a 20-
dimensional observation vector for each video frame. Then 4-state syllable
HMMs are trained on this data, from which new observation parameter se-
quences can be synthesized for any input text (text-to-visual-speech). An
extension of this setup was presented by Tamura et al. (1998a), where joint
audiovisual syllable HMMs are trained, using the lip parameters for the vi-
sual part and mel-cepstral coefficients for the acoustic part. These models
are then used to produce lip movement for a given input speech signal: first,
the audio part of the models is used to find the temporal syllable borders
in the signal in a recognition step, and then lip motion trajectories are syn-
thesized using these temporal borders (speech-driven visual speech). If the
utterance of the input speech signal is known, the recognition step becomes
easier and thus results in more accurate borders (text-and-speech-driven vi-
sual speech). With the same data, Tamura et al. (1999) also trained joint
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Figure 2.18: Ten parameters to
characterize the inner lip contour
(image from Masuko et al., 1998).

Figure 2.19: Video frame ex-
tracted from supplementary mate-
rial published with Tamura et al.
(1998a).

Figure 2.20: Photo-realistic textures for 3D head models (images from Go-
vokhina et al., 2006, Bailly et al., 2008, and Bailly et al., 2009).

audiovisual HMMs to synthesize both an acoustic and a visual speech sig-
nal for given input text (text-to-audiovisual-speech). In this study, 7-state
syllable HMMs and 4-state tri-phone HMMs were compared, which resulted
in similar synthetic lip movement, but better acoustic speech from the tri-
phone HMMs. Although this body of work may fall short to those discussed
before in terms of capturing accuracy and visual detail (Figure 2.19 shows
an example frame14), it is of high relevance because it is conceptually related
to the system described in the following chapters of this dissertation.

GIPSA Lab in Grenoble have also made important contributions on audio-
visual synthesis using HMMs. Govokhina et al. (2006) use an HMM-based
trajectory formation system for articulatory gesture planning to guide a
segment selection/concatenation procedure (similar to hybrid systems dis-
cussed in Section 2.1.3) for facial speech animation. In later studies, they
synthesize facial motion trajectories directly from visual HMMs and add to
each model a mean time lag to the temporal borders of the corresponding

14Example videos at http://www.isca-speech.org/archive_open/avsp98/av98_221.
html.
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Figure 2.21: Example frames generated by a hybrid HMM/unit selection
system for speech-driven 3D facial animation (image from Tao et al., 2009).

acoustic phone unit (Govokhina et al., 2007), to improve synchronization.
These mean time lags are learned iteratively using forced alignments of the
training data. The systems of this group additionally also produce dynamic
photo-realistic texture maps for the face models (Bailly et al., 2009), some
examples can be seen in Figure 2.20.

Similar to the speech-driven facial motion synthesis described above (Tamura
et al., 1998a), Hofer et al. (2008) use audiovisual HMMs for first aligning
the trained models to a new input speech segment (recognition step using
the acoustic parts of the models) in order to then synthesize 3D lip motion
using the same unit borders (synthesis step using the visual parts of the
models). In a follow-up study, Hofer and Richmond (2010) showed that an
artificial neural network was able to outperform the HMM-based approach
for this task.

A hybrid HMM/unit selection system for speech-driven 3D visual synthesis
was proposed by Tao et al. (2009). They recorded several hundred utterances
using 50 facial markers with synchronous audio. This data was then used
to train audio and visual HMMs, which are then coupled into fused HMMs.
The resulting models can then be used to drive the unit selection process
(via target and concatenation costs) to find a marker motion sequence for
given audio input. Their system is tailored to be very fast and thus suitable
for real-time applications. A shortcoming of their study is that it does
not include subjective evaluations; the quality of the resulting animations
is assessed based on objective error measures and on the judgment of the
authors. Figure 2.21 shows example frames created by their system.

Before concluding the subsection on model-based visual speech, it should
be noted that the MPEG consortium developed the MPEG-4 Facial An-
imation standard (Pandzic and Forchheimer, 2003), which includes a set
of facial landmarks (such as bottom of the chin), a set of facial animation
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parameters (such as certain speech articulation gestures, or motion of spe-
cific landmarks) and a set of facial distance units (such as eye separation),
which may be used as measuring units for specifying animation parameter
amplitudes. Originally designed to allow very low bit rate compression and
transmission of animation parameters, the MPEG-4 standard is used by
some research groups in visual speech synthesis and not by others. It is not
(yet) widely adopted in the animation industry. The research presented in
this dissertation does not make use of MPEG-4, mainly because the facial
motion capturing system we use does not follow the standard. Instead we
used that system’s format for simplicity.

2.2.3 Fusion of Image-based and 3D-based Paradigms

This section presented several approaches to visual speech synthesis, making
a distinction into image-based and 3D-model-based methods. This border is
becoming increasingly blurry as image-based methods start to incorporate
some 3D features (e.g., L. Wang et al., 2011b, Figure 2.9) and as 3D methods
start to use photo-realistic textures (e.g., Elisei et al., 2001, Figure 2.17).
These efforts to increase realism are successful to a certain degree, but the
problem of flexible scene illumination, for example, remains unsolved. Re-
alistic shading requires a more detailed 3D mesh than just a rudimentary
face shape to which the changing texture is applied, and one that actually
deforms over time. And while it is true that a dynamic photo-realistic tex-
ture can provide additional detail (e.g., skin wrinkles) for a 3D model, these
details are in fact not there from a shading point of view, which means they
cannot correctly honor changes in illumination.

Recent advances in capturing and rendering technology make very high def-
inition animated 3D faces (including wrinkles and even skin pores) possible,
where the color information is simultaneously captured under controlled
illumination conditions and thus suitable for “re-shading” in a differently
lighted scene. Several companies have demonstrated impressive results in
this area, e.g., Disney Research (Beeler et al., 2011)15, DimensionalImag-
ing16 and Nvidia17; Figure 2.22 shows an example. Following such an ap-
proach, where deforming high-resolution facial meshes are recorded, results
in extremely high-dimensional data. In order to use such data for synthe-
sis, a suitable lower-dimensional representation needs to be found. Without
having such data available to experiment with, it is difficult to say whether

15Disney Research example videos at http://graphics.ethz.ch/publications/
papers/paperBee11.php.

16Dimensional Imaging example videos at http://www.youtube.com/watch?v=
wriTh6pg7To and http://www.di3d.com/products/4d_systems/.

17Nvidia “FaceWorks” example videos at http://www.youtube.com/watch?v=
STzAxVYUl4Y and http://www.youtube.com/watch?v=F9y-8IzNpQ4.
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Figure 2.22: Image from one camera (left), untextured rendering of the
3D surface reconstructed from 7 cameras (middle), rendering with texture
(right). Images from Beeler et al. (2011).

simple methods like PCA are sufficient or whether something more complex
is required. Still, it seems possible that these recent advances in capturing
and rendering technology may close the gap between image-based and 3D-
based methods for visual speech synthesis, by providing 3D data (with all the
flexibilities) and rendering techniques which achieve photo-realism.

2.3 Audiovisual Speech: Synchrony between
Sound and Vision

A good audiovisual speech synthesis system, which produces acoustic speech
and facial motion given some input text, does not only need to generate both
kinds of signals in high quality; it also needs to achieve good temporal align-
ment between the two, i.e., synchrony between sound and vision, in order
to deliver an audiovisual experience that is consistent with those delivered
by a real speaking person.

For the intelligibility of speech in noise, it has been shown that simulta-
neous presentation of the speaking face has a significant beneficial effect
(Sumby and Pollack, 1954), even when the speaker is a synthetic talking head
(Ouni et al., 2007). This benefit is naturally dependent on correct alignment
(within some tolerance interval) between speech and face motion. And even
if intelligibility remains unaffected by small synchronization discrepancies,
the perceived naturalness or overall quality may still be impaired.

A simple and very common synchronization approach, followed by the ma-
jority of the systems presented earlier, is to use the phone beginning and
end times provided by a TTS system as input for visual speech synthesis.
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In such a setup, the TTS system, responsible for producing the acoustic
speech signal, and the visual speech synthesis system are treated as mostly
independent, consecutive components. The TTS system processes the tex-
tual input, passes the sequence of phone symbols and their temporal borders
(both of which can be seen as intermediate results in the process of produc-
ing the speech signal) on to the visual system, and continues to generate
an acoustic speech signal. The visual system then produces a visual sig-
nal using the same temporal borders. For concatenative systems, this is a
reasonable choice (e.g., if the acoustic and visual units are taken from an in-
ventory which was recorded simultaneously, synchronization will always be
correct anyways) and for rule-based systems there is maybe no alternative
(since there is no visual data, the rules need to be defined such that they
produce facial animations that “correctly” match the audio both in terms of
movement and synchronization). However, for generative approaches (like
HMMs) divergence between the two modalities can be a problem.

Tamura et al. (1999) address this problem by training joint audiovisual
HMMs, which model the acoustic features and the mouth shape parameters
of each frame together, as a combined, multi-modal observation, including
dynamic features of both modalities. In their setup, the phone borders are
trained as a common duration model for both modalities. From such a joint
audiovisual voice model, it is straightforward to generate synchronous sig-
nals. The same kind of modeling is also used by the two-step systems of
Hofer et al. (2008), Hofer and Richmond (2010), L. Wang et al. (2010) and
L. Wang et al. (2011b), where the goal is to generate a visual signal for a
given input audio signal. Govokhina et al. (2007) and Bailly et al. (2009) use
an explicit phasing model to align the sequences generated by their acoustic
and visual HMMs. The approach of joint audiovisual modeling is also ap-
plied in Chapter 6 (and Schabus et al., 2014a), where its benefit is analyzed
in detail.
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Chapter 3

Speech Synthesis Using
Hidden Markov Models

This chapter is intended to provide an overview of statistical parametric
speech synthesis using HMMs, in particular the parts that are relevant for
extending an existing acoustic system to visual and audiovisual speech syn-
thesis. Rather than starting from a fundamental introduction of HMMs,
the more focused perspective here will follow the concrete procedure from
the original speech data via feature extraction and training to the final syn-
thesized speech. A more thorough introduction to HMMs can be found in
the classical tutorial by Rabiner (1989). Overviews of speech synthesis us-
ing HMMs can also be found in the survey articles of Zen et al. (2009) and
Tokuda et al. (2013), as well as in the PhD dissertations of Masuko (2002),
Yoshimura (2002), Zen (2006), and Yamagishi (2006).

3.1 Audio Feature Extraction and Re-Synthesis

A recorded speech audio signal as a waveform, i.e., a one-dimensional signal
at a very high sampling rate like 44 100Hz (see Row 1 of Figure 3.1) is of
limited use for speech processing. Both for human analysis of speech and
for speech processing by machine, spectral information is of vital impor-
tance. Phoneticians typically use a three-dimensional graphical representa-
tion where the horizontal axis represents time, the vertical axis represents
frequency, and the plotted color or intensity indicates the amplitude of the
corresponding frequency at the corresponding point in time. This is called a
spectrogram (see Row 2 of Figure 3.1), which allows straightforward visual
identification of, for example, fricatives where high frequencies dominate
(such as /f/ and /S/ in Figure 3.1), as well as vowels with their distinct
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Figure 3.1: Audio features extracted from the German sentence “Vater hat
den Tisch gedeckt.” (father has set the table), phonetically /"fa:t5 hat de:n
tIS g@"dEkt/, uttered by a male speaker (the author, in this case). Row 1:
waveform of the recorded audio signal. Row 2: spectrogram. Row 3: au-
tomatically determined phone borders. Row 4: first 5 MFCCs. Row 5:
fundamental frequency. Row 6: first 5 band-aperiodicity features.

formants (characteristic peaks in the frequency spectrum, e.g., dark hori-
zontal bars in /a:/). Mel-Frequency Cepstral Coefficients (MFCCs) (Davis
and Mermelstein, 1980) are typically used as acoustic features for spectral
information in computational processing of speech and other audio signals.
They are computed as follows.

To obtain the complex cepstrum of a speech signal segment, a complex
Fourier transform is computed, followed by a complex logarithm, followed
by an inverse Fourier transform (Oppenheim and Schafer, 1968). Typically,
a frequency transformation is applied in this process, to obtain a frequency
resolution similar to that of the human ear, e.g., a transformation to the
mel-scale (Stevens et al., 1937) or a mel-generalized variant (Tokuda et al.,
1994). The spectrum H(ejω) may then be represented approximately by
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M + 1 cepstral coefficients as

H(z) = exp
M∑
m=0

cm ·
(
z−1 − α
1− αz−1

)m
, (3.1)

where z = ejω is any complex number with |z| = 1, |α| < 1 is a real-
valued constant which determines the frequency warping, and the number
of coefficients (M +1) determines the quality of the approximation. The co-
efficient vector [c0, c1, ..., cM ]> is then used as the feature vector representing
the spectral information of the speech signal segment (Fukada et al., 1992;
Tokuda et al., 1994).

The human vocal tract acts as a dynamic spectral filter which allows the
production of different speech sounds by changing the spectral properties
over time. To capture these dynamic changes between sounds, the speech
segments considered for spectral feature extraction need to be quite short,
certainly shorter than the duration of a phone. A typical setup would be
to use segments of 4096 samples, which corresponds to roughly 93ms at
a sampling rate of 44 100Hz, with a frame shift of 5ms, which results in
strongly overlapping segments (0–93, 5–98, 10–103, etc.), to which a win-
dowing function (e.g., a Blackman window) is applied and of which then the
MFCCs are determined. A frame shift of 5ms gives rise to 200 feature vec-
tors per second (200Hz), each of them typically of 40 dimensions (M = 39)
for speech synthesis. Row 4 of Figure 3.1 shows the first five (of a total of
40) MFCCs extracted from the speech signal shown in Row 1. It can be
seen that they are fairly smooth, and that their amplitude decreases with
growing order.

For many applications, among them speech recognition and speaker ver-
ification, MFCCs can be sufficient as audio features. For speech synthe-
sis, however, we need to be able to “invert” the analysis step to obtain
a speech signal again, and for this an excitation signal is additionally re-
quired. In the simplest form, speech can be generated following a source-
filter model, illustrated in Figure 3.2: the excitation source is chosen based
on a voiced/unvoiced decision. For voiced speech sounds, a quasi-periodic
train of pulses is generated according to the required pitch period, and for
unvoiced speech sounds a sequence of random noise is generated. The exci-
tation signal is then filtered by a slowly time-varying linear system, which
uses spectral information as input (Imai, 1983; Fukada et al., 1992; Masuko,
2002). Therefore, the feature extraction procedure needs to extract pitch in-
formation in the form of fundamental frequency to allow re-synthesis. Row 5
of Figure 3.1 shows the fundamental frequency extracted from the speech
signal shown in Row 1. Its value is defined only for segments corresponding
to voiced speech sounds, and its frame rate is also governed by the frame
shift, as for the MFCCs (a frame shift of 5ms resulting in 200Hz).
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Figure 3.2: Discrete-time source-filter model for speech production (image
from Masuko, 2002).

Furthermore, it is known that the vibration created by the vocal folds during
speech is not perfectly periodic, and that incorporating such aperiodicities
into voice coding can improve the achieved voice quality (Fujimura, 1968).
A very common speech analysis and re-synthesis system called STRAIGHT
(Kawahara et al., 1999; Kawahara et al., 2001) therefore also extracts ape-
riodicity features for several frequency bands and uses pitch-adaptive win-
dowing for more accurate spectral feature extraction, in order to allow high-
quality re-synthesis from the parameters. Row 6 of Figure 3.1 shows the first
five (of a total of 25) band-aperiodicity features extracted from the speech
signal shown in Row 1. Again, a 5ms frame shift results in 200 parame-
ter vectors per second. The MFCCs, the fundamental frequency and the
aperiodicity features in Figure 3.1 were all extracted using the STRAIGHT
analysis tools, and the audiovisual speech synthesis system presented in the
following chapter also uses STRAIGHT for both analysis and re-synthesis.
The HTS working group have adopted STRAIGHT for their speech synthesis
system in 2005. Zen et al. (2007b) discuss the benefits of this analysis/re-
synthesis system for HMM-based speech synthesis.

To summarize, an analysis/re-synthesis tool like STRAIGHT can be used
on a recorded one-dimensional speech signal at 44 100Hz to extract, e.g.,
66-dimensional feature vectors (40 + 1 + 25 for mel-cepstral, fundamental
frequency and band-aperiodicity features) at 200Hz. Using the re-synthesis
part of STRAIGHT, a speech signal can be generated from these parame-
ters, yielding a one-dimensional signal at 44 100Hz once again. Although of
high quality, this speech encoding and decoding procedure is not perfect, in
the sense that the speech signal re-synthesized from the parameters is not
identical to the original recording. In particular, a certain “buzziness” of
the voiced excitation is audible.1

1A listening example of the utterance of Figure 3.1 comparing recorded speech and
speech re-synthesized from STRAIGHT parameters can be found at http://schabus.
xyz/phd/resynthesis.
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3.2 Phonetic Borders via Forced Alignment

It should be noted that other speech parametrizations exist that are also used
in HMM-based speech synthesis. Zen et al. (2009) provide an overview.

3.2 Phonetic Borders via Forced Alignment

We can use the described analysis procedure to extract a sequence of feature
vectors for each recorded utterance. As described in the following section, we
want to use phones as the fundamental modeling unit. Therefore, in order
to use the extracted feature vector sequences of a collection of speech record-
ings as training data, a phonetic labeling of this data on the temporal axis
is required. This can be done manually, typically by listening to the sam-
ples and looking at various graphical representations, like the spectrogram
in Row 2 of Figure 3.1. However, this is an extremely time-consuming task,
requires phonetic expertise, and poor inter- and intra-expert consistency can
be a problem. For these reasons, automatic procedures are commonly used
for this task (Leung and Zue, 1984), typically using HMMs in a fashion very
similar to automatic speech recognition (Brugnara et al., 1993): Since the se-
quence of phones for a given sound file is already known, a collection of phone
HMMs can be used to determine those temporal borders that maximize the
likelihood of the observations (i.e., the feature vectors). This is sometimes
called “forced alignment”, because the phone sequence is given and fixed,
and the aim is to find the best temporal alignment between the models cor-
responding to this phone sequence and the observed speech feature sequence.
If available, the acoustic models of a general-purpose speaker-independent
speech recognition system can be used for this procedure. Otherwise, an it-
erative “flat-start” approach can be used: At the beginning, each utterance
of the training data is divided into phones equidistantly (because no bet-
ter information is available). Then, acoustic models (e.g., HMMs modeling
MFCCs) are trained on the speech segments according to this (poor) seg-
mentation. Although the resulting models will not be very accurate, they
can be used for forced alignment, resulting in a new segmentation of the
data, which is very likely to be an improvement over the initial equidistant
segmentation. This process is iterated several times, and it results in usable,
albeit not perfect alignments.

The vertical lines in Figure 3.1 show the phonetic borders resulting from
such a flat-start alignment procedure, with the respective phones given in
Row 3. It can be seen that the resulting borders are generally reasonable:
the initial silence, the high-frequency fricative /f/, the vowel /a:/ and the
first /t/ consisting of a silent closure phase followed by a burst seem to be
correctly aligned. On the other hand, the duration of the vowel /e:/ seems
to be much too short. In this particular case, the reason for the suboptimal
alignment stems from an assimilation carried out by the speaker: instead
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of producing two plosives /t/ and /d/ in succession, only a single one was
realized. So the procedure was “forced” to find an additional phone which
is not actually there, resulting in this artifact, where the /d/ contains most
of what should be part of the /e:/, and the latter becoming unnaturally
short.

Despite the presence of such alignment errors, phonetic labelings created in
this manner are usable in practice, and in fact all experiments presented in
this dissertation are based on flat-start alignments, sometimes with small
amounts of manual correction applied afterwards.

3.3 Training of Feature Models

Next, we want to train HMMs for the phonetically labeled features extracted
from a collection of recorded utterances. The temporal modeling unit in
speech recognition and synthesis is usually one phone. This can be said
to be a natural choice, as it results in an inventory of manageable size (in
contrast to, e.g., words) and it is linguistically well founded. Because we
are interested in modeling concrete realizations, we stick to the term phone
rather than phoneme here, but the difference between the two is small from
an engineering perspective and the speech processing literature sometimes
uses them interchangeably.

If we assume for now that one HMM is trained for each distinct phone
appearing in our training data2, and that, e.g., 41 phone symbols have been
used to transcribe the utterances, then we need to use the observations
present in the training data to train 41 phone HMMs such that they best
“explain” the training data.

Figure 3.3 shows a typical HMM structure used for speech synthesis: a
five-state left-to-right model with no skips and no self-loops. In contrast to
HMMs in general, the state transition probabilities play no role in such a
model, because all states are traversed sequentially from left to right, and the
number of observations generated by each state is governed by explicit state
duration Probability Density Functions (PDFs) instead of self-loop state
transition probabilities, as discussed in more detail in the following Sub-
section 3.3.1. Therefore, the only parameters required to concretely define
such a model are the five duration PDFs and the five output or observation
PDFs; in both cases typically Gaussian distributions:

pi(d) = N (d |µi, σ2
i ) for the duration of state i, (3.2)

bi(ot) = N (ot |µi,U i) for the output of state i, (3.3)
2This is not actually the case, as discussed in Subsection 3.3.4.
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Figure 3.3: Structure of a typical HMM in speech synthesis: a five-state
left-to-right model with no skips and with explicit state duration modeling
(figure after Tokuda et al., 2013).

where d ∈ R is a random variable representing the number of observations,
ot ∈ RD is a D-dimensional random variable representing the observations,
and D is the dimensionality of the extracted speech feature vectors.

Such an HMM defines a stochastic generative process that generates feature
vector sequences: According to the duration PDF of the first state p1(d), a
concrete duration for state 1 is “drawn”, i.e., the number of observations this
state will need to generate (d1 = 4 in Figure 3.3). Then, that many observa-
tion vectors ot are “drawn” according to the state’s output PDF b1(ot) (re-
sulting in o1,o2,o3,o4 in Figure 3.3). Likewise for the remaining states 2–5,
resulting in the complete observation sequence o = (o1,o2, ...,oT ) produced
by the unobservable (“hidden”) state sequence q = (q1, q2, ..., qT ).

Phone HMMs are concatenated to build utterance HMMs, both later on
for synthesis, but also during training. At first, the phone HMMs are ini-
tialized using the data “associated” with each phone symbol via the given
alignment, typically using the segmental K-means algorithm (Juang and
Rabiner, 1990). Then, however, the HMM parameters are iteratively refined
considering entire utterances, and the association of a certain observation
vector to a certain state of a certain phone is no longer fixed but instead
captured as a probability, defined by the HMM parameters. Given an ob-
servation vector sequence o = [o>1 ,o>2 , ...,o>T ]>, the goal of the training
procedure is to find the model λmax that is most likely to have generated
the observation sequence o:

λmax = argmax
λ

p(o|λ) (3.4)

= argmax
λ

∑
∀q
p(o, q|λ). (3.5)

Note that the summation runs over all possible state sequences q, whose
number grows exponentially with the number of observations. Further-
more, there is no closed-form solution to this maximization problem. How-
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ever, the efficient iterative re-estimation procedure of the Baum-Welch algo-
rithm (L. E. Baum et al., 1970; Rabiner, 1989), an instance of the Expecta-
tion Maximization (EM) method (Dempster et al., 1977), is guaranteed to
converge at least to a local maximum, and it is the usual method to train
HMMs (not only in speech synthesis).

Once the models are trained, they can be used to generate an observation
sequence o∗ which is most likely to be produced by the respective utterance
model λ,

o∗ = argmax
o

P (o|λ). (3.6)

Synthesis of arbitrary utterances will be discussed in more detail in Sec-
tion 3.4. First, the following four subsections discuss specific modeling con-
cepts which are important for speech synthesis, namely explicit duration
modeling, dynamic features, multi-space distributions and clustering of full-
context models.

3.3.1 Explicit Duration Modeling: Hidden Semi-Markov
Models

As already mentioned, the general way of modeling HMM state occupancy
duration (i.e., the number of observations generated by a state) in terms
of a self-loop transition probability is often avoided in speech synthesis. In
a general HMM, the (implicit) duration probability density pi(d) of state i
with a self-transition coefficient aii is

pi(d) = (aii)d−1(1− aii) (3.7)
= probability of d consecutive observations in state i, (3.8)

and this exponential density is often inappropriate for modeling physical
signals over time, such as speech (Rabiner, 1989). Instead, the duration is
modeled by explicitly specifying a duration distribution for each state. After
this modification, the model’s stochastic process does not fulfill the Markov
property anymore, which states that the conditional probability distribution
of future states of the process depends only upon the present state. In
the modified model, the next hidden state also depends on the amount of
time spent in the current state, making it a so-called semi-Markov process.
Accordingly, the modified model is called a Hidden Semi-Markov Model
(HSMM) (a good overview is given by Yu, 2010).

Explicit durations have been proposed for HMM-based speech synthesis (and
introduced to the HTS system) quite early by Yoshimura et al. (1998). How-
ever, the Gaussian distributions for each state were estimated from statistical
variables obtained in the last iteration of the forward-backward algorithm.
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This means that during the EM training of the HMMs, “traditional” models
with self-transition probabilities were trained, which were discarded at the
end, and for synthesis the explicit duration models were used. This inconsis-
tency was cleared by Zen et al. (2004) and Zen et al. (2007d) by introducing
the HSMM re-estimation formulae, where the PDFs for both state output
and state duration are re-estimated during EM training, into the HMM-
based speech synthesis framework (and also the HTS system).

The formulation by Zen et al. (2004) and Zen et al. (2007d) falls into the
category of “explicit duration HMM”, which Yu (2010) distinguishes from
general HSMMs, “variable transition HMMs” and “residential time HMMs”
in his classification of HSMM realizations. In general HSMMs, both the state
and the duration are dependent on both the previous state and its duration.
In contrast, for “explicit duration HMMs” the simplifying assumptions are
made that the transition to the current state is independent from the du-
ration of the previous state, and that the duration is only conditioned on
the current state. Given the HSMM structure of Figure 3.3, which contains
no branches and where the state transition probability between any two
consecutive states is therefore equal to one, the state sequence is entirely
determined by the mutually independent state duration distributions.

Although gamma distributions (Ishimatsu et al., 2001) and log-normal dis-
tributions (Yamagishi et al., 2004) have been applied to state duration mod-
eling in HMM-based speech synthesis, Gaussian distributions are most com-
monly used, although it is known that they are not an optimal choice: The
number of observations is inherently discrete and non-negative, the Gaussian
distribution however is continuous and also negative values have a probabil-
ity greater than zero. Nevertheless, simple one-dimensional Gaussian PDFs
pi(d) = N (d|µi, σ2

i ) are often used to model the observed state durations
di, and in the synthesis stage a simplified procedure is used in practice,
where first all state durations (and thus the state sequence q) are deter-
mined and then a speech feature vector sequence is generated for this fixed
state sequence, rather than optimizing the likelihood across duration and
observation PDFs simultaneously. The state durations di are calculated
as

di = µi + ρ · σ2
i , (3.9)

where µi and σ2
i are the mean and variance of the Gaussian distribution

for the duration of state i, and ρ is an acceleration parameter which can be
used to control the speaking rate. “Normal” speaking rate is achieved with
ρ = 0, faster speech with ρ < 0 and slower speech with ρ > 0.3

3Note however, that recent results from the FTW SALB project indicate that simple
linear speaking rate scaling seems to be superior to this non-linear scaling based on the
variance (Valentini-Botinhao et al., 2014).
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3.3.2 Observation Modeling with Dynamic Features

In the stochastic generative process of the HSMM of Figure 3.3, the obser-
vation PDFs bi(ot) are responsible for generating the speech feature vector
sequence for each state i. As described in Section 3.1, the speech signal is
parametrized by mel-cepstral, fundamental frequency, and aperiodicity fea-
tures, each at 200Hz sampling rate. By regarding the three different feature
vectors of one moment in time (with dimensionality 40, 1 and 25, e.g.) as
one combined observation of dimensionality D (D = 40 + 1 + 25 = 66), the
features can be modeled simultaneously by a single D-dimensional obser-
vation PDF (Yoshimura et al., 1999). Typically, Gaussian distributions are
used with the assumption of diagonal covariance matrices, i.e., the compo-
nents are assumed to be independent (within and between the three different
features). In this way, each of the D components of the speech features is
modeled by the (one-dimensional) mean and variance calculated from the
values for this component appearing in all occurrences of the respective
phone in the training data.

From the definition of the PDF for the D-dimensional Gaussian distribution
(also called multivariate normal distribution) with mean vector µ (of size
D × 1) and covariance matrix Σ (of size D ×D),

N (o|µ,Σ) = 1√
(2π)D|Σ|

exp
(
−1

2(o− µ)>Σ−1(o− µ)
)
, (3.10)

it is obvious that P (o|λ) from Equation 3.6 is maximized when o = µ,
i.e., the mean vector is the most likely observation. Together with the as-
sumption of conditional independence between the state output probability
densities this entails that at each point in time, the most likely observation
is the mean vector of the current state and hence that the generated obser-
vation sequence is a sequence of mean vectors. In the case of synthesizing
speech signals from HSMMs, such unrealistic step sequences of features are
problematic.

To overcome this problem, Tokuda et al. (1995) proposed to additionally
include dynamic features into the observation vector. For a speech feature
component ct for time t, the dynamic features ∆ct and ∆2ct are defined
as

∆ct =
A∑

i=−A
ui ct+i, and (3.11)

∆2ct =
B∑

i=−B
vi ∆ct+i. (3.12)
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For example,

∆ct = ct+1 − ct−1
2 , and (3.13)

∆2ct = ∆ct+1 −∆ct−1
2 = ct+2 − 2ct + ct−2

4 , (3.14)

i.e., the first and second order central difference quotients, which approx-
imate the first and second order derivatives at time t of the time-discrete
feature trajectory. Adding the dynamic features triples the observation vec-
tor dimensionality (e.g., (40 + 1 + 25) · 3 = 198), the resulting observation
vector structure is illustrated in Figure 3.4.

Observation vectors augmented with dynamic features had previously been
used successfully in speech recognition to improve the recognition rate (e.g.,
Furui, 1986), but the work of Tokuda et al. (1995) on speech synthesis con-
tains an important innovation: the generation of parameters from an HMM
under the constraints of the dynamic feature distributions in the maximum
likelihood sense. Many concepts in HMM-based speech synthesis that re-
main important until today were already included in the work of Donovan
and Woodland (1995a), Donovan and Woodland (1995b) and the PhD the-
sis of Donovan (1996), for example. However, the problem mentioned above
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of piece-wise constant parameters per state was reported to be an issue by
Donovan and Woodland (1995a), whereas the maximum likelihood param-
eter generation algorithm considering dynamic features by Tokuda et al.
(1995)4 successfully overcomes this problem, as illustrated in Figure 3.5: It
is clearly visible that without dynamic features, all observations generated
by the same state are identical, which creates discontinuities at the state
transitions. With dynamic features, on the other hand, the spectrum varies
smoothly over time. This may be seen as one of three key steps in making
HMM-based speech synthesis popular, the second being the release and on-
going development of the open source system HTS (Zen et al., 2007a), and
the third being the possibility of adaptation (discussed in Section 3.5).

Despite the undeniable success of using observation vectors that combine
static and dynamic features, this approach may be seen as an ad-hoc en-
gineering technique that works, but lacks theoretical elegance: Since the
dynamic features are calculated from neighboring static features (cf. Equa-
tions 3.11–3.14), the relationship between them is completely deterministic.
This fact is however ignored in the modeling, as the static and dynamic
features are modeled as independent statistical variables, which allows in-
consistencies between them. Zen et al. (2007c) have therefore proposed a
reformulation which explicitly imposes the relationships between the static
and dynamic features, resulting in a kind of model they named a “trajec-
tory HMM”, for which they also derived a Viterbi-type training algorithm.
Although Zen et al. (2007c) reported successful improvements achieved in
both speech recognition and speech synthesis, trajectory HMMs have not
yet become widely adopted. They are also, for example, still considered a
“recent development” by Tokuda et al. (2013).

3.3.3 Excitation Modeling Using Multi-Space PDFs

It was mentioned in Section 3.1 that the Fundamental Frequency (F0) is
defined for voiced speech signal segments only, and this is also illustrated in
the example of Figure 3.1 (Row 5). From the rough sketch of the re-synthesis
procedure is is also clear that a voiced/unvoiced decision is required for each
point in time. The F0 observation sequence thus needs to contain continuous
one-dimensional values for voiced speech segments (i.e., feature extraction
windows) and a discrete symbol that labels unvoiced speech segments as
such. Neither a one-dimensional continuous probability density function
nor a discrete probability distribution can model such observation sequences
adequately.

For this reason, Tokuda et al. (1999) have proposed to use Multi-Space
4Interestingly, the two papers of Donovan and Woodland (1995a) and Tokuda et al.

(1995) were presented at the same conference, namely ICASSP 1995 in Detroit.
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Distributions (MSDs) to model F0 in their HMM-based speech synthesis
framework. The idea of an MSD is that the observations come from a
sample space Ω that is composed of G subspaces Ω1, ...,ΩG:

Ω =
G⋃
g=1

Ωg. (3.15)

Each subspace has a certain dimensionality ng and a certain PDF Pg(x),x ∈
Rng . Since they are PDFs, the Pg need to be properly normalized, i.e.,∫

Rng
Pg(x) dx = 1. (3.16)

Furthermore, there is a probability wg for each subspace, which indicates the
probability that an observation is drawn from this subspace, i.e., P (Ωg) =
wg, where

G∑
g=1

wg = 1. (3.17)

The probability distribution for the entire composed space can be expressed
as

P (Ω) =
G∑
g=1

P (Ωg) =
G∑
g=1

wg

∫
Rng
Pg(x) dx =

G∑
g=1

wg = 1. (3.18)

The zero-dimensional case (ng = 0) is used for discrete observations. It
is assumed that the zero-dimensional space contains only one single point,
and that P(x) = 1 for ng = 0. An observation o of dimensionality n is
distributed according to

b(o) =
∑

g∈S(o)
wg Pg(x), (3.19)

where S(o) is a set containing the indices of all subspaces that are of the
same dimensionality n, i.e.,

S(o) = {g : ng = n} for o ∈ Rn. (3.20)

When all ng in an MSD are equal to zero, the resulting distribution is identi-
cal to the discrete distribution. When G = 1 and n1 = m ≥ 1, the resulting
distribution is identical to an m-dimensional continuous distribution. When
G > 1 and all ng are equal to the same value m ≥ 1, the resulting distri-
bution is identical to an m-dimensional G-mixture PDF. Hence, the MSD
concept contains discrete, continuous and continuous mixture distributions
as special cases.
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Tokuda et al. (1999) and Masuko (2002) call HMMs that use MSDs as output
distributions MSD-HMMs and give a comprehensive derivation of the re-
estimation algorithm for MSD-HMM parameters in a general sense. In the
particular case of F0 modeling, the setup they propose to apply is quite
simple: the multi-space consists of a one-dimensional subspace for voiced
regions of speech and a zero-dimensional subspace for unvoiced regions of
speech (i.e., G = 2, n1 = 1 and n2 = 0), and the output probability of
observation o at state i is

bi(o) =
{
wi,1N (o|µi, σ2

i ) (voiced)
wi,2 (unvoiced),

(3.21)

where wi,1 and wi,2 are the probabilities of the observation being voiced
or unvoiced, respectively, and N (o|µi, σ2

i ) is a one-dimensional Gaussian
distribution for the F0 values.

As discussed in the previous section, neighboring observations are used to
calculate the dynamic features at each observation (cf. Equations 3.11–
3.14). This poses a problem at the point of change from unvoiced to voiced
(or vice-versa), because not all values to calculate ∆F0 and/or ∆2F0 are
defined (more precisely, they do not all come from the same subspace),
even though the static F0 value is indeed defined. Therefore, the dynamic
features are treated as unvoiced if any of the values required for calculating
them is unvoiced. As a consequence, the change from voiced to unvoiced
(or vice-versa) does not happen at the same point in time (i.e., at the same
observation) for F0, ∆F0 and ∆2F0, and therefore they are modeled as three
independent streams in the HTS system, each with an MSD distribution as
in Equation 3.21. Figure 3.4 from the previous section illustrates the five
streams of the feature vector.

3.3.4 Full-context Modeling and Decision-Tree-Based Con-
text Clustering

At the beginning of Section 3.3, where feature model training was intro-
duced, the assumption was made that one HSMM would be trained per
distinct phone symbol appearing in the training data, e.g., 41 HSMMs for
a training corpus that uses a phone set of size 41. However, such a system
design would be a poor choice: It is well known that the way a certain
phone is realized is strongly influenced by contextual factors, e.g., neigh-
boring phones. The tongue and other articulators do not jump from one
position to the next but move in a continuous and often “optimizing” fash-
ion. For example, the /t/ phones in the two words “tea” and “tree” are quite
different, in this case due to an anticipatory assimilation effect (retracted
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and somewhat labialized /t/ before /ô/).5 One option to adequately model
such co-articulation effects would be to use a larger, more fine-grained phone
set. Another, more elegant option is to apply context-dependent modeling
and let the training procedure handle the problem.

Bahl et al. (1980) introduced the idea of context-dependent phone modeling
for automatic speech recognition, and Bahl et al. (1991) subsequently used
binary decision trees for clustering the resulting models. The PhD disserta-
tion of Odell (1995) provides an elaborate treatment of this subject and also
introduced these techniques into the HTK speech recognition toolkit.

The general idea is easiest explained by a concrete example. Let us consider
the utterance “There was a change now” and let us assume the utterance is
represented by the following phone symbol sequence:

(dh, eh, r, w, aa, z, ax, ch, ey, n, jh, n, aw)

In a context-independent setup, we would simply use the symbol ey as the
label for the speech feature vector sequence corresponding to the diphthong
in the word “change”. In a context-dependent setup, on the other hand,
we use for the same feature vector sequence a label which is composed of
that symbol plus its context, for example, ch-ey-n (a so-called tri-phone)
or ax-ch-ey-n-jh (a so-called quin-phone). This allows for more accurate
modeling, because the variation among all sequences bearing the same label
is greatly reduced. Of course, the number of distinct labels, and hence
HSMMs to train, becomes much larger, and the number of training instances
per label becomes smaller, for a given data corpus.

For example, the well-known American English CMU Arctic SLT speech
data corpus6 consists of 1132 utterances and a total of 38 866 phone in-
stances. It contains 41 distinct phones, 9546 distinct tri-phones and 28 662
distinct quin-phones. This means that for many quin-phones, there is only
a single training instance available, which is obviously insufficient for robust
HSMM parameter estimation. It furthermore means that most of the theo-
retically possible 415 ≈ 116 million quin-phones do not appear at all in the
training data.

To overcome these problems, similar contexts need to be grouped together
such that for each group there is a sufficient amount of training data, where
“similar” should mean similarity in terms of realization, i.e., in terms of the
data in the feature vector sequences (rather than similarity of the labels).
The most successful method for this grouping is to cluster the contexts using
a binary decision tree, where the inner nodes of the tree are yes/no questions

5This holds for British Received Pronunciation as well as General American pronunci-
ation, but not necessarily for other varieties of English.

6http://www.festvox.org/cmu_arctic/index.html
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about the phonetic context, and the leaves of the tree define the groups or
clusters. Odell (1995) contrasts this top-down approach with bottom-up
clustering of similar models and lists the following advantages from a speech
recognition perspective:

• Due to the hierarchical structure, all models are “equally context-
dependent”, there is no need for less specific back-off models for con-
texts that have not occurred in the training data.

• Expert knowledge can be incorporated into the system by defining ap-
propriate phonetic/linguistic questions which are used in the decision
tree.

• During the construction of the tree, we can ensure that a sufficient
amount of training examples is available by stopping the splitting pro-
cedure when a certain threshold is reached.

• Arbitrarily detailed additional contextual questions can be added,
without the risk of underrepresented leaf nodes, if the tree is con-
structed carefully.

In speech recognition, unseen contexts as mentioned in the first point might
come from a language model and a pronunciation dictionary which are used
to build the model trellis of all possible utterances before recognition. For
speech synthesis, a TTS system needs to be able to produce an appropriate
speech signal for any given input context, also unseen ones.

To construct a binary clustering tree, a set of phonetic questions is required,
which can be answered affirmatively or negatively for a given speech segment
based on the information in its label. Because the clustering procedure is
completely automatic, even more fine-grained criteria than “just” the five
phones of the quin-phone can be used. As a typical example for speech
synthesis, the question set included in the American English HTS demo
package,7 which uses the aforementioned CMU Arctic SLT corpus, is de-
scribed in the following. All given examples are such that the answer to the
question is yes for the example from the beginning of this subsection (ey
from the sentence “There was a change now”).

For each phone symbol φ in the phone set of the corpus (41 phones), the
question set contains the following five questions concerning the five phones
of the respective quin-phone:

• Is the current (C) phone φ? Example: C-ey

• Is the phone preceding the current phone (left, L) φ? Example: L-ch

• Is the phone before that (left-left, LL) φ? Example: LL-ax

7http://hts.sp.nitech.ac.jp/?Download
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• Is the phone succeeding the current phone (right, R) φ? Example: R-n

• Is the phone after that (right-right, RR) φ? Example: RR-jh

Furthermore, there are questions related to 60 (overlapping) phone classes
(e.g., vowels, consonants, stops, nasals, fricatives, rounded vowels, unrounded
vowels, voiced fricatives, unvoiced fricatives, etc.). The question set contains
five questions for each phone class Φ following the same pattern LL-Φ, L-Φ,
C-Φ, R-Φ, RR-Φ as for the phone identity questions above.
Examples: LL-Back_Vowel, L-Affricate_Consonant, C-Diphthong_Vowel,
R-Nasal, RR-Voiced_Fricative.

There are also several positional questions included in the question set, fol-
lowing the pattern: Is the position of the current {phone, syllable, word} in
the current {syllable, word, phrase}, relative to its {beginning, end} {equal
to, less than, more than} {1, 2, 3, 4, 5, 6, 7}?
Examples: Pos_C-Phone_in_C-Syl(Fw)==2, Pos_C-Word_in_C-Phrase(Bw)<=3

Similarly, there are questions concerning various counts, like the number of
phones in the {previous, current, next} syllable, the number of syllables in
the {previous, current, next} word etc.
Examples: R-Word_Num_Syls==1, Num-Syls_in_Utterance<=10

There is furthermore a number of questions regarding (lexical) stress and
(intonational) accent of syllables, including whether or not the {previous,
current, next} syllable is stressed/accented or not, and also several questions
addressing positions and counts regarding stressed/accented syllables.

More complete lists are given in Zen et al. (2007a) and Tokuda et al. (2013);
an exhaustive list can be found in the questions file in the HTS demo package
mentioned above, in which a total of 1483 questions are defined. For an-
swering all these questions for a given feature vector sequence, the respective
information needs to be present in the label for that sequence. Therefore,
in practice the labels do not only contain the five phones of the quin-phone,
but around 50 additional fields giving the various positions, counts, etc. re-
quired to answer all questions. Such feature-rich contextual descriptions are
referred to as full-context labels.

It is worth noting that many more features may be added to the ques-
tion set (and the full-context labels), depending, e.g., on the language, di-
alect/accent, speaking style, emotion, application domain, etc. In general,
any split into two disjoint sets (corresponding to all contexts for which the
question is answered affirmatively and negatively, resp.) which can be made
on the symbolic level (i.e., based on the information in the labels) and which
can be expected to discriminate the two sets on the signal level (based on
some similarity measure for feature vector distributions) makes a good can-
didate for a question.
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Next we consider how the clustering trees are built. The procedure starts
with a collection of initial models, one for each full-context label appearing
in the training data. In the case of the CMU Arctic SLT corpus and the
question set described above, the entire corpus of 38 866 phones contains
38 658 distinct full-context labels (i.e., almost all full-contexts appear only
once). For each of these a feature vector distribution has already been
estimated based on the available training data. At the beginning, all models
are in one big cluster. From all questions in the question set that have not yet
been used, the one question that “best” splits the models into two clusters is
selected. This question (e.g., C-Vowel) becomes the root node of the decision
tree, with two child nodes corresponding to the clusters containing all models
for which the answer to the question was yes (e.g., vowels) and no (e.g.,
non-vowels), respectively. This process is iterated, by repeatedly splitting
all leave nodes (clusters) into two using the respective “best” question, until
some stopping criterion is met.

Both open issues, i.e., how to determine the optimal question for the next
split and when to stop further splitting leaf nodes, can be addressed by the
Minimum Description Length (MDL) criterion (Rissanen, 1978). Given a
set of models {1, ..., i, ..., I}, the description length li(xN ) of model i for the
data collection {xN = x1, ..., xN} is defined as

li(xN ) = − logPθ̂(i)(xN ) + αi
2 logN + log I, (3.22)

where αi is the number of free parameters of model i and θ̂(i) is the collection
of maximum likelihood estimates for these parameters, θ̂(i) = (θ(i)

1 , ..., θ
(i)
αi ).

The first term is the negative log-likelihood for the data, whose value de-
creases with increasing model complexity. The second term can be inter-
preted as a penalty for high model complexity. The third term is the code
length required for choosing model i and may be assumed to be constant.
Hence, the model with minimal description length will be the one with the
best trade-off between data explanation accuracy and model size (thus fol-
lowing an intuition similar to the principle of “Occam’s razor” (Domingos,
1999)).

Invented by Rissanen (1978), the MDL criterion was applied successfully to
tree-based clustering of continuous-density HMMs for speech recognition by
Shinoda and Watanabe (2000) using several simplifying assumptions, and
subsequently to speech synthesis in a similar fashion by Yoshimura (2002).
MDL-based clustering has been available in the HTS system since version
1.0 (December 2002).

Each of the three speech features (spectral, fundamental frequency and ape-
riodicity) and also state duration may be influenced by different contextual
factors, and thus their distributions are not pooled together but separate
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Table 3.1: Number of leaf nodes in the clustering trees after training an
American English voice using the CMU Arctic SLT data

State

Feature 1 2 3 4 5 Total

Mel-cepstral 275 238 235 260 275 1265
Log F0 518 724 944 936 633 3755
Duration 562

clustering trees are constructed per feature. Furthermore, the feature vec-
tor sequences represented by each of the individual states of a full-context
HSMM are quite different (beginning, middle and end of the respective
phone), and thus the distributions per HSMM state are also clustered in-
dependently for the speech features. For duration, the five one-dimensional
distributions corresponding to the number of observations for each of the
five states are actually combined into one five-dimensional distribution, re-
sulting in only one single clustering tree for duration. Therefore, a total of
5 · 3 + 1 = 16 clustering trees are built in a setup with five-state HSMMs
and the three features discussed earlier in this chapter.

Table 3.1 gives the number of leaf nodes in all clustering trees (and hence
the number of estimated distributions) after the HTS demo training using
the CMU Arctic SLT data has finished. In this case the demo training
using the mel-generalized cepstral vocoder (Tokuda et al., 1994) (i.e., not
STRAIGHT) was used, therefore there are no aperiodicity features. It can
be seen that even for the most diverse group of distributions (state 3 of log
F0), the originally 38 658 distributions have been grouped into 944 clusters,
a reduction of more than 97 percent.

Figure 3.6 shows part of the MFCCs clustering tree for the second HSMM
state. Firstly, this illustrates how the splitting procedure started with rather
general questions concerning the current phone (Is it a vowel? If no, is it
a voiced consonant? etc.) and that questions regarding the neighboring
phones (e.g., L-No_Continuent) or position (e.g., Seg_Bw<=1) only begin to
appear at a certain depth. Secondly, we can use the part shown here (in
which only three of the 238 leaves are shown, cf. Table 3.1) to see which
distribution would be used for our example context ey from the sentence
“There was a change now” by following the following path from the root to
a leaf node:

• Is the current phone a vowel? Yes, ey is a vowel.

• Is the vowel of the current syllable a front vowel? Yes, the ey itself is
the vowel of the single-syllable word “change”, and it is a front vowel.
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Figure 3.6: Part of the clustering tree for the spectral features of the second
HSMM state after running the HTS demo training on the CMU Arctic SLT
data.

• Does the vowel of the current syllable belong to the group of i-like
vowels? No, ey is not an i-vowel.

• Is the current phone a diphthong? Yes, ey is a diphthong.

• Is the current phone the last phone of the syllable it appears in? No,
the ey is followed by a n and a jh.

• Is the left neighbor phone not a continuent? Yes, the ch is a non-
continuent.

• Is the left neighbor phone a voiced stop? No, ch is neither voiced nor
a stop (it is an affricate).

The path ends in a leaf node containing the identifier of a distribution,
mgc_s3_205. This tells us that this distribution, which models spectral fea-
tures of the second HSMM state, was trained using data from the feature
vector sequence extracted from the ey of the sentence “There was a change
now”, which was part of the training data. Furthermore, it tells us that if
we were to synthesize such a context, we should use this distribution for the
second state’s spectral features.
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This completes the section on model training. In practice, several of the
steps are iteratively repeated to obtain more robust estimates, but all the
important concepts have been discussed in this section.

3.4 Synthesis of Arbitrary Utterances

This section describes how we synthesize speech for an arbitrary input text,
given the end result of the training procedure, i.e., a collection of clustering
trees and the distributions associated to all leaf nodes.

As described in Chapter 2, the input text is first processed by a transcrip-
tion stage, which typically employs a normalization component that con-
verts abbreviations, numbers, etc. into their written-out form; a pronunci-
ation dictionary where the phone sequence, syllable borders, lexical stress
and part-of-speech for the words of the input text can be looked up; and
prediction modules for the aforementioned, for words that are not found
in the dictionary. The output of the transcription stage is a sequence of
full-context labels, which contain all the symbolic information required to
correctly traverse the clustering decision trees.

Next, a single utterance HSMM is constructed by concatenating phone
HSMMs. Using for each of these the model structure of Figure 3.3 (five
states, each with their duration and observation distributions) and the obser-
vation vector structure of Figure 3.4 (40-dimensional spectral, 1-dimensional
fundamental frequency, and 25-dimensional aperiodicity features, each with
their delta and delta-delta features), we need to obtain all the correct dis-
tributions: At each of the five states, a distribution for the duration, one
for the spectral features, one for the fundamental frequency and one for the
aperiodicity features are required. By traversing each of the 16 decision
trees using the full-context label generated by the transcription stage for
the respective phone, 16 leaf nodes and their associated distributions are
found, and the three feature distributions at each state are stacked to form
five observation distributions. Finally, we obtain an utterance HSMM con-
sisting of n states (where n = 5k if k is the number of phones), each with
a one-dimensional duration distribution and a 198-dimensional observation
distribution.

After building the utterance HSMM λ, the next step is to compute the
speech feature vector sequence that model λ is most likely to generate. Using
the assumption of independence between state durations and state output
as discussed in Section 3.3.1, we can already determine the state sequence
using the duration distributions alone. For “normal” speaking rate (ρ =
0) the variances can be disregarded (cf. Equation 3.9) and the number of
observations generated by each state is simply the (rounded) mean of the
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corresponding duration distribution, resulting in the state sequence

q = (q1, ..., qT ) = (s1, s1, ..., s1︸ ︷︷ ︸
d1

, s2, s2, ..., s2︸ ︷︷ ︸
d2

, ..., sn, sn, ..., sn︸ ︷︷ ︸
dn

), (3.23)

where the si are the identifiers of the n states of the utterance HSMM and
the di are the respective numbers of observations.

As discussed in Section 3.3.2, the observations ot modeled by the HSMMs are
composed of the “original” speech feature observations ct and their dynamic
and acceleration features, i.e.,

ot = [c>t ,∆c>t ,∆2c>t ]>. (3.24)

But we are not interested in actually generating sequences for the dynamic
features; Rather, the goal is to generate a sequence of static features which
honors (in the maximum likelihood sense) the distributions for the static
as well as those for the dynamic features. The relationship between the
sequences c = [c>1 , ..., c>T ]> and o = [o>1 , ...,o>T ]> can be expressed in matrix
form as

o = Wc. (3.25)

Using this relationship, the static observation sequence c∗ that the utterance
HSMM λ is most likely to generate can be found from the state output
distributions P (o|λ) as

c∗ = argmax
c

P (Wc|λ) = argmax
c
N (Wc|µq,Σq). (3.26)

By equating the partial derivative of the logarithm of Equation 3.26 with
respect to c to 0, a set of linear equations can be obtained to solve for
c∗:

W>Σ−1
q Wc∗ = W>Σ−1

q µq, (3.27)
c∗ = (W>Σ−1

q W )−1W>Σ−1
q µq. (3.28)

By exploiting the special structure of W>Σ−1
q W , Equation 3.27 can be

solved very efficiently using the parameter generation algorithm by Tokuda
et al. (1995), or by using Cholesky decomposition or QR decomposition
(Tokuda et al., 2000). A concise explanation of the parameter generation,
including a visual explanation of Equation 3.25 is given by Zen et al. (2007c)
(also found in Zen, 2006).

After c∗ has been found, which is a sequence of, e.g., 40 + 1 + 25 = 66-
dimensional vectors, we can decompose it into the vector sequences of the
individual speech features (spectral, fundamental frequency and aperiodicity
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Figure 3.7: Schematic overview of an HSMM-based speech synthesis system
(figure after Yoshimura et al., 2001).

features), and finally use the re-synthesis procedure (cf. Section 3.1) to create
from those the final speech waveform. Figure 3.7 summarizes the HSMM-
based speech synthesis system: In the training stage, parameter vectors
are extracted from a collection of speech recordings. These parameters are
then used together with the phonetic/temporal labels to train HSMMs. In
the synthesis stage, a transcription module translates the input text into a
sequence of phonetic labels. The most likely parameter vector sequence for
this label sequence is generated from the HSMMs, and the parameters are
re-synthesized to a speech signal.

3.5 Average Voices and Adaptation

An important advantage of the statistical parametric approach to speech
synthesis—in particular in contrast to concatenative methods—is the ability
to train average voice models across multiple speakers and to adapt such
average voice models towards a new target speaker. Like the concept of
speech modeling with HMMs itself, also the idea of adaptation originated in
the speech recognition field (Gauvain and Lee, 1994; Digalakis et al., 1995;
Leggetter and Woodland, 1995).
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The most straightforward use case for adaptation in both speech recognition
and speech synthesis is to obtain a high quality model for a specific target
speaker, for whom only a small amount of speech data is available, by adapt-
ing from an average voice model that was previously trained using a large
multi-speaker speech database (e.g., Tamura et al., 1998b). The advantages
are evident: As soon as a large, high-quality average voice model is avail-
able, many different speakers’ voices can be created with a small recording
and training effort required for each of them. Figure 3.8 shows a schematic
overview of a speaker-adaptive HSMM-based speech synthesis system. The
synthesis stage is the same as in Figure 3.7; however, the training here now
consists of two parts. First, an average voice is trained using a multi-speaker
database. Then, the resulting average voice models are adapted using a tar-
get speaker database.

A multi-speaker training data collection for an average voice includes many
speaker-dependent characteristics. However, the goal is to adapt to a wide
variety of target speakers, therefore the average voice model should avoid
such speaker-dependent characteristics. To overcome this problem, Yam-
agishi and Kobayashi (2007) proposed a Speaker-Adaptive Training (SAT)
algorithm, which normalizes the influence of speaker differences by means
of Maximum Likelihood Linear Regression (MLLR). The difference between
each of the speakers and the canonical average voice is expressed by a simple
linear regression function applied to the means of both the observation and
the state duration distribution:

µ
(f)
i = ζ(f)µi + ε(f) = W (f)ξi, and (3.29)

m
(f)
i = χ(f)mi + ν(f) = X(f)φi. (3.30)

where µ(f)
i and m(f)

i are respectively the mean vectors of the state output
and duration distributions for training speaker f and state i; µi and mi

are the corresponding means for the average voice model, and ξi = [µ>i , 1]>
and φi = [mi, 1]> are their correspondents in homogeneous coordinates. Fi-
nally,W (f) = [ζ(f), ε(f)] andX(f) = [χ(f), ν(f)] are transformation matrices
which indicate the difference between training speaker f and the average
voice.

Let F be the number of training speakers, O = {O(1), . . . ,O(F )} be all
the training data, and O(f) = {o1f

, . . . ,oTf
} be the training data of length

Tf for speaker f . The HSMM-based speaker-adaptive training algorithm
described by Yamagishi and Kobayashi (2007) simultaneously estimates the
parameter set of the HSMM λ and the set of transformation matrices Λ(f) =
(W (f),X(f)) for each training speaker so that the likelihood of O is maxi-
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Figure 3.8: Schematic overview of a speaker-adaptive HSMM-based speech
synthesis system (figure after Yamagishi et al., 2009b).

mized, i.e., it solves

(λ∗,Λ∗) = argmax
λ,Λ

P (O | λ,Λ) (3.31)

= argmax
λ,Λ

F∏
f=1

P (O(f) | λ,Λ(f)), (3.32)

where Λ = (Λ(1), . . . ,Λ(F )) is the set of the transformation matrices for all
training speakers.

Instead of the simple MLLR method, in which only the mean vectors but
not the variances are transformed, Yamagishi et al. (2009b) have proposed
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feature-space speaker-adaptive training where both means and variances are
affected by the transform. During clustering of the average voice models, it
has been shown to be beneficial to apply node splits only if there is data
from all speakers available for the resulting child nodes (Yamagishi et al.,
2002; Yamagishi et al., 2003).

For adaptation of the resulting average voice model to a new target speaker,
a procedure similar to SAT is applied: Using the target speaker speech
data, those linear transformations that need to be applied to the aver-
age voice distributions are determined that maximize the likelihood of the
adaptation data. Again MLLR may be used, but several other adaptation
approaches have been investigated by Yamagishi et al. (2009a), including
Constrained Maximum Likelihood Linear Regression (CMLLR), where the
same transformation is applied to both mean and variance, and also a new
method called Constrained Structural Maximum A Posterioi Linear Regres-
sion (CSMAPLR). CSMAPLR is shown to be particularly successful in this
task, in terms of both objective and subjective evaluation results.

With as little as 50–100 sentences of adaptation data from the target speaker,
natural sounding speech with high similarity to the target speaker can be
synthesized using this approach (Yamagishi and Kobayashi, 2007). Interest-
ingly, subjective listening tests have shown that an adapted voice using 100
sentences for adaptation was even rated as having more similar speaker char-
acteristics to the target speaker than a “conventional”, speaker-dependent
model trained with 450 sentences from the target speaker (Yamagishi and
Kobayashi, 2007). The speaker-adaptive approach was also shown to be sig-
nificantly less negatively affected by the use of noisy, inconsistent and un-
balanced data than other TTS paradigms (Yamagishi et al., 2009b).

In addition to adaptation towards a certain target speaker, these techniques
can also be applied to other tasks such as synthesizing speech with various
speaking styles (Tachibana et al., 2006), fast speech synthesis (Pucher et
al., 2010a), synthesis of dialects with scarce resources (Pucher et al., 2010b;
Toman et al., 2013b), and cross-dialect transformation (Toman et al., 2013a),
for example.
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Chapter 4

Developing an Audiovisual
Speech Synthesis Pipeline

This chapter describes in full detail the pipeline for audiovisual speech syn-
thesis developed and used in the research for this dissertation, from the
recordings of the raw speech and motion data, via data post-processing,
feature extraction, model training, and feature generation to the final ani-
mation rendering. This is not only important for understanding how such a
system works and for reporting what exactly was developed within this dis-
sertation project, but also for the reproducibility of the research. Given the
information provided in this chapter, anyone should be able to repeat the
experiments discussed in the following chapters and verify the results.

Parts of this chapter have been published before in Schabus et al. (2012a),
Schabus et al. (2013) and Schabus et al. (2014b).

4.1 Equipment for Recording Speech andMotion

A marker-based optical motion capturing system called NaturalPoint Opti-
Track Expression1 was used for recording facial motion. A photograph of
the system’s hardware and a screen shot of its software are shown in Fig-
ure 4.1. This system consists of six FLEX:V100R2 cameras placed around
the speaker’s face such that different views of the same scene are captured.
The cameras are equipped with infrared LEDs and they capture light in the
infrared spectrum only, such that reflective materials will appear very bright
in the cameras’ sensors, and everything else—in particular, the speaker’s
face and body—will appear relatively dark. Small plastic semi-spheres with

1http://www.naturalpoint.com/optitrack/
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Figure 4.1: OptiTrack motion capturing hardware (top) and software (bot-
tom).

76



4.1 Equipment for Recording Speech and Motion

a highly reflective surface are glued to the speaker’s face, which will then
appear as very bright dots in the camera images. These markers are then
tracked over time in 3D space by the system in the following way: From the
camera input gathered in a calibration procedure, the system reconstructs
the relative position of the cameras to each other in three-dimensional space.
When a marker is placed in front of the calibrated system such that it is vis-
ible from multiple cameras, the respective x, y positions in these cameras’
sensor planes are used together with the calibration results to compute a
3D position x, y, z via triangulation. Since the time-synchronized cameras
record a new image every 10ms, the displacement of every facial marker
from one frame to the next will be quite small, which allows the system to
robustly track the movements of all markers over time. Thus, the system’s
output consists of a 3D trajectory (i.e., a sequence of 3D points) at 100Hz
for each marker.

A seventh FLEX:V100R2 camera provides 640×480 pixels grayscale video
footage for control purposes, at the same frame rate of 100Hz and with
frame-level synchrony to the 3D data. Figure 4.2 shows an image from this
seventh camera, also displaying the marker layout used in the recordings.
37 markers are placed on the speaker’s face at the following positions:

• 5 markers down the middle of the face

1. Nose bridge
2. Nose tip
3. Upper lip
4. Lower lip
5. Chin

• 16 markers on either side of the face

1. Inner brow
2. Middle brow
3. Outer brow
4. Upper eyelid
5. Lower eyelid
6. Outer eye corner
7. Left resp. right nose bridge
8. Cheek
9. Ear (close to the ear on the face, not actually on the ear)
10. Sneer line
11. Left resp. right upper lip
12. Left resp. right lower lip
13. Mouth corner
14. Smile line
15. Inner jaw
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Figure 4.2: Example frame from the OptiTrack system: grayscale image
from the control video (left) and reconstructed 3D points seen from a frontal
view (middle) and from a side view (right). Lines added for illustrative
purposes.

16. Outer jaw

A headband holds four additional markers, giving a total of 41 markers
recorded by the OptiTrack system.

Although the OptiTrack system generally records the markers’ trajecto-
ries quite robustly, the data does sometimes contain tracking errors. For
example, when two markers come close together and subsequently depart
again from each other, the system sometimes mistakes one for the other.
Such “swaps” and other discontinuities like short gaps, erroneous trajectory
jumps, etc. need to be manually identified and corrected. The OptiTrack
software provides some tools for manually editing the recorded trajecto-
ries to that end. With a growing amount of data, manual clean-up can
become very time-consuming; however, experience throughout this disser-
tation project has shown that starting from a “cleaner” data corpus can
greatly improve the modeling and synthesis results.

For audio, a high-definition audio recorder was used (an Edirol R-4 Pro) to
record signals at 44 100Hz sampling rate, 16 bit encoding, captured by a pro-
fessional microphone (an AKG C-414 B-TL). The recordings were performed
in an anechoic, acoustically isolated room with artificial light only.

For synchronization between the audio and 3D recordings, the speakers were
asked to produce a simple clapping signal at the beginning of each recording.
This makes it straightforward to identify the position of the signal in both
the audio recordings as well as in the grayscale video. Due to the frame
rate of the latter, this results in a synchronization accuracy of ±5ms. Each
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recording was started in a neutral pose (relaxed face, mouth closed, eyes
open, looking straight ahead).

4.2 Retargeting: Using Recorded Marker Motion
to Control a 3D Head Model

With marker-based systems like OptiTrack, the assumption is made that
the motion of the markers placed at the selected positions is sufficient to
capture all facial movement and deformation. This is convenient because the
markers are much easier to track robustly than natural facial feature points,
and because it results in a compact and well-defined data representation.
Depending on the number of markers and the chosen marker layout, as well
as on the required granularity of the recorded motion, this assumption may
or may not be justified. However, the use of this technique in the animation
industry (Pighin and Lewis, 2006) indicates that with accurate tracking of a
certain number of markers, the captured motion detail can be “good enough”
for practical purposes, thus justifying the assumption to some degree.

However, even if the assumption is indeed justified, there still remains a
problem to be solved, namely, how to obtain a complete animation of a
high-resolution head model (i.e., a sequence of 3D coordinates for all the
vertices of the head mesh) from recorded marker motion (i.e., a sequence of
3D coordinates for a small number of selected vertices of the head mesh).
It is straightforward to (manually) establish a one-to-one correspondence
between the recorded markers and vertices on a given high-resolution head
model, even if the physiology of the recorded speaker and the 3D head
are quite different. With this correspondence, the recorded marker motion
already specifies the motion of some of the markers of the 3D model. How-
ever, it is much less straightforward to determine appropriate motion for the
many other vertices of the head model. This process is called retargeting in
animation industry parlance and Pighin and Lewis (2006) describe several
techniques for retargeting a recorded facial performance (referred to as the
source animation) onto a digital face (referred to as the target).

In general, the retargeting function, which maps each frame of the source
into a frame for the target, needs to be crafted manually to some degree by
an animation expert. This may include fine details like skin wrinkling or
lip protrusion which are not actually captured by the marker motion, but
which can be expected to result from a given marker constellation being
applied to a given head model. It is important that the marker layout is
designed such that it captures as many degrees of freedom of the recorded
face as completely as possible; additional details can be inferred from physi-
cal/anatomical constraints and if they are built into the retargeting function
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or the parametrization of the target head, then they can still be realized,
even if they are not captured directly by the markers. Although the cre-
ation of the retargeting function involves manual input, it can be applied in
a fully automatic fashion, once it is defined, to turn recorded marker data
into target animations. For relatively small amounts of animation (like for
an animated film of say 90 minutes), additional manual post-processing is
often carried out in order to achieve supreme quality.

The typical use case for a system like OptiTrack is to record facial perfor-
mances with it, which can then be used in a computer game or animated
film after retargeting. This approach might reach better animation qual-
ity at reduced production costs in comparison with creating all animations
entirely by hand (Pighin and Lewis, 2006). This is taken a step further
by adding the concept of synthesis to the picture: instead of recording all
the required performances and retargeting them, the idea is now to record
marker data for a representative collection of utterances, which can be used
to train a text-to-marker-data system. That system can then create appro-
priate marker motion data for any given text input, and together with the
retargeting procedure this results in a complete text-to-visual-speech sys-
tem. This can imply a drastic further reduction of the production costs per
second of speech animation, especially when the number of required utter-
ances becomes very large, and it even allows utterances to be dynamically
composed during run-time. Realistically, it will however also imply a quality
reduction, because it should be expected that the animations generated by
a synthesis system do not reach the quality of recordings.

In Chapter 2, systems were mentioned that produce visual speech for acous-
tic speech input (e.g., L. Wang et al., 2010, Tamura et al., 1998a, Hofer
et al., 2008 and Tao et al., 2009). These systems can be chained with a TTS
system to produce speech from text, and then visual speech from the result,
to provide a text-to-audiovisual speech system. However, they can also be
used with recorded speech. At the moment, this may be the most realistic
way to reduce costs while achieving acceptable audiovisual speech quality,
because the acoustic speech signal can contain any emotional or conversa-
tional aspects required for the respective story (which is still very difficult
to achieve with a TTS system), but the facial animations are created au-
tomatically. For this kind of pipeline, the step from research prototypes to
commercial applications has already been taken.2

NaturalPoint, the manufacturer of the OptiTrack system, provides a free
“Motion Builder Goody Pack”3 which includes the 3D head model depicted

2For example, the company Speech Graphics shows some impressive demonstrations at
http://www.speech-graphics.com/samples/.

3The goody pack can be downloaded from http://www.naturalpoint.com/optitrack/
downloads/expression.html and some explanatory videos are available at http://www.
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4.3 Data Post-Processing

Figure 4.3: NaturalPoint head model showing the polygon topology, shaded
without texture, shaded with texture and marker positions visible, and
shaded with texture with mouth open during speech.

in Figure 4.3 consisting of 39 622 polygons, and also a ready-to-use retar-
geting function for applying marker motion recorded with the OptiTrack
system to this head model using the Autodesk MotionBuilder4 animation
software. This head model and retargeting function were used unaltered for
all experiments in this dissertation, which focuses on the task of synthesizing
marker motion sequences of high quality.5 Building a realistic head model
with detailed parametrization and retargeting is considered a separate prob-
lem that is important (and also interesting), but one that is not addressed
here.

4.3 Data Post-Processing

The recorded audio data is in standard waveform audio format and directly
ready for use in the HTS system, which expects such audio files and extracts
spectral parameters, fundamental frequency and band-aperiodicity features
from them using STRAIGHT, as described in Section 3.1 (Audio Feature
Extraction and Re-Synthesis). This section is therefore dealing mostly with
the motion capturing data.

naturalpoint.com/optitrack/products/expression/tutorials.html.
4http://www.autodesk.com/products/motionbuilder/overview
5An example video showing a grayscale video, the raw recorded marker motion, and

the retargeted marker motion to the 3D head is available at http://schabus.xyz/phd/
retargeting.
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4.3.1 Face Data Format Conversion

The OptiTrack motion capturing system stores the recorded facial motion
data in its own format, but it can export to the open C3D6 format as well
as to the proprietary but widespread FBX format7. To ease processing, the
data was converted to a more simplistic format. Each of the 41 markers has
a name (e.g., “LMouthCorner”) and a (x, y, z) position for each recorded
frame. Stacking all the coordinates vertically, in alphabetical marker name
order, results in a column vector of 41·3 = 123 entries that describes a single
frame. Then such frame column vectors are stacked horizontally, forming
matrices of shape 123×n, where n is the number of frames (and n/100 is the
duration of the utterance in seconds). Hence, each row of such an utterance
matrix gives the trajectory of a certain coordinate of a certain marker over
time.

4.3.2 Head Motion Removal

Since head motion influences the movement of all face markers, but our final
goal is lip motion synthesis, we have to remove global head motion from the
data. This can be done under the assumption of fixed distances between the
four headband markers. A reference frame is chosen, and then for each other
frame, a transformation matrix is computed which moves the headband
markers of that frame to the same position as in the reference frame. By
application of this transformation matrix to all 41 markers in that frame,
we can eliminate global head motion, keeping only the facial deformation in
the data. After this step, the four headband markers become static and can
be removed. The position and orientation of the head in coordinate space
is therefore determined by the reference frame, which will be different for
each recording. In order to normalize the recordings in this respect, a global
translation and rotation needs to be applied to each recording, such that the
reference frames (in neutral pose) of all recordings are at the same position
in the coordinate space and oriented in the same direction. For example,
in the reference frame, the central upper lip marker is at the origin of the
coordinate space and the line between the two ear markers is parallel to the
x-axis.

4.3.3 Utterance Cutting

The data was recorded in blocks of 25 utterances. As already mentioned,
each block was started in a neutral pose, followed by a clapping signal for

6http://www.c3d.org
7http://www.autodesk.com/products/fbx/overview
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synchronization and then the 25 utterances were read by the speaker and
recorded. This data needs to be cut into separate files per utterance with
synchronized audio and motion data. For each 25 utterance block, the tem-
poral position of the clapping signal was determined by manually identifying
the frame in the 100Hz grayscale video from the OptiTrack system where
the hands first touch, and the frame in the 44 100Hz audio signal where a
certain amplitude threshold (depending on the recording level) is crossed.
From these numbers, an offset in seconds between the two modalities is
calculated. Using a sound detection algorithm on the audio recordings (as
available, e.g., in the Audacity8 open-source audio editor), the borders of
all non-silent parts can be detected automatically. After manual cleanup,
these borders can be used to cut the audio signal, and—together with the
synchronization offset—also the motion data into separate files per utter-
ance.

4.4 Feature Extraction

After post-processing, the facial motion for each recorded utterance is repre-
sented by a 123× n matrix, where n is the number of frames at 100Hz. We
can also interpret this matrix as a 123-dimensional trajectory of length n, or
as 41 3-dimensional trajectories (one per marker), or as 123 1-dimensional
trajectories. Figure 4.4 shows 7 of the 123 trajectories of a recorded utter-
ance of 2.22 seconds length. The figure shows the y and z coordinates of
the central lower lip marker, the left mouth corner marker, and the nose tip
marker. All plots range from 0 to 222 frames on the horizontal axis, and
show the variation over time in millimeters in the space of the respective
coordinate on the vertical axis. The vertical ranges are all of the same size,
i.e., the scaling is identical for all plots. Several observations can be made
from these plots:

• The trajectories vary around a certain value on the respective axis,
depending on the marker’s position in coordinate space (and on the
face).

• The degree of variation can differ substantially between markers. E.g.,
in this utterance, the z coordinate of the left mouth corner varies by
more than 13mm; the y coordinate of the nose tip by less than 1mm.

• The three coordinates of a given marker are generally not independent
from each other. E.g., the y and z coordinates of the central lower lip
marker show some obvious similarity.

8http://audacity.sourceforge.net

83

http://audacity.sourceforge.net


4 Developing an Audiovisual Speech Synthesis Pipeline

• The same is true also across markers. E.g., the z coordinates of the
central lower lip and the left mouth corner are also quite similar.

Especially the last two points are relevant for trajectory modeling with
HMMs as described in Chapter 3. If considerable correlations between some
of the 123 coordinates are to be expected, estimating Gaussian distributions
for this data requires estimating 123 × 123 covariance matrices, i.e., more
than 15 thousand parameters. If, on the other hand, a de-correlated repre-
sentation of this data is found, with no (or at least negligible) correlation
between any two coordinates, then all off-diagonal values of the covariance
matrices are (almost) zero and it is sufficient to estimate the values on the
diagonal, i.e., the variances of the 123 coordinates.

Furthermore, it is intuitively clear that 123 degrees of freedom are more
than expected to be necessary to parametrize the possible movements of
the face while speaking; there are many strong constraints on the defor-
mation of a person’s face while speaking, for example simple mechanical
limitations. Therefore, a procedure to reduce dimensionality while keeping
the relevant information is needed. The standard method of PCA (Pear-
son, 1901; Shlens, 2014) is a natural choice here, as it provides both flexi-
ble dimensionality reduction and component de-correlation. The following
subsections will therefore describe how PCA can be applied to the facial
motion data (as published in Schabus et al., 2012a) and justify its use for
visual speech synthesis, with a focus on allowing speaker-adaptive modeling
(as published in Schabus et al., 2013).

4.4.1 PCA-based Feature Extraction

In a single-speaker setup with m utterances, the available facial motion data
consists of a collection of m matrices, whose rows are marker coordinate
trajectories. Before proceeding to PCA, the four headband markers can be
removed from the data, because they are static anyway after global head
motion removal (see Section 4.3.2). Furthermore, it can be argued that eye
blinking is not directly related to speech production and therefore the four
eyelid markers should also be excluded. Thus 33 markers remain, and the m
matrices all have 99 rows (3 spatial coordinates per marker), and a varying
number of columns, depending on the length of the utterance. Let us denote
the matrices containing the facial motion data by F i and their lengths by
ni:

F i ∈ R99×ni for i ∈ {1, ...,m}. (4.1)
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Figure 4.4: Example facial marker trajectories.
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By stacking all utterance matrices horizontally, we obtain a (very wide)
single matrix A of all utterances from this speaker:

A = [F 1F 2 · · ·Fm] ∈ R99×N , with (4.2)

N =
m∑
i=1

ni. (4.3)

Next, we calculate the mean column vector µ of A and subtract it from
each column of A to obtain the “mean-normalized” Ā:

µ = 1
N ·A · 1, (4.4)

Ā = A− µ · 1>, (4.5)

where 1 denotes a column vector of N ones and > denotes matrix transpose.
Finally, the matrix Ā can be decomposed using Singular Value Decomposi-
tion (SVD) (Shlens, 2014):

Ā = U ·Σ · V >. (4.6)

We are solely interested in the matrix U of size 99 × 99, whose columns
are the bases of the principal component space, sorted by decreasing eigen-
values. Using U , we can project a frame column vector x into PCA space
by multiplying U> from the left (U> · x), and back into the original space
by multiplying U>’s inverse from the left. Since U is orthogonal, we have
(U>)−1 = (U>)> = U and thus

x = U · (U> · x). (4.7)

Because the bases in U are sorted, we can approximate the equality of
Equation 4.7 by using only the “most relevant” components, i.e., the first k
columns of U :

x ≈ Uk · (U>k · x), (4.8)

where the quality of the approximation improves with increasing value of k.

Note that instead of using SVD to find the principal components, equiva-
lently they can be found by computing the eigenvectors of the covariance
matrix of the data, and that thus the PCA projection of the data amounts
to a diagonalization of the covariance matrix (Shlens, 2014). Although SVD
is more efficient to compute in practice, the latter view makes it clearer how
PCA results in de-correlation.

So we can carry out SVD on the mean-subtracted data Ā of a speaker,
choose a value for k < 99 and project the data into a smaller (k-dimensional)
subspace using U>k . Then, HMM training and synthesis can be performed
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using this more compact and de-correlated representation of the speaker’s
data. Synthesized utterances can be projected back into the full 99-dimen-
sional space using Uk, and by re-adding the sample mean µ we finally obtain
the corresponding synthesized facial marker movement.

The subtraction of the sample mean µ before SVD is a standard procedure
before a change of basis (like PCA), but it plays an interesting role in our
facial marker setup: µ contains the average position of each marker, and
subtracting it from A to obtain Ā means that the latter will contain mark-
ers moving about the origin of the 3D coordinate space. In other words,
µ contains the general position of the markers, i.e., the facial geometry of
the speaker, and Ā contains only the motion data relative to these posi-
tions.

Furthermore, it is worth noting that the “projection function” U>k can of
course be applied not only to column vectors from Ā (from which U is de-
rived using SVD), but to any 99-dimensional vector, to project it into PCA
space. This is of great interest for multi-speaker scenarios, in particular for
speaker-adaptive modeling, where the aim is to train an average model across
multiple speakers, which can later be adapted towards a previously unknown
target speaker. In such a scenario, we can combine mean-normalized matri-
ces Ā1, Ā2, ... from multiple speakers into one big matrix Āavg to carry out
SVD to find U>k . The key idea regarding the speaker-adaptive scenario is
now to apply this same projection, which was determined on the data for
the average voice, to project the adaptation data from the target speaker
into the same subspace. This assumes that we find a subspace via SVD
on the data from the (potentially large number of) speakers in the average
voice that is general enough to also contain the target speaker’s data, pro-
vided that we do not choose the value of k too “tight”. The purpose of the
following subsection is to justify this assumption, as well as to choose an
appropriate value for k.

4.4.2 Objective and Subjective Feature Evaluation

The study described here has been published in (Schabus et al., 2013) and it
is based on the data of three standard Austrian German speakers. In order
to evaluate how well the results of PCA, when carried out the way we have
described in the previous subsection, do match our task of visual feature ex-
traction, we use both objective and subjective performance measures.

One of the three is always considered as the target speaker, i.e., the data
to be projected (and reconstructed, when we consider the reconstruction
error) are all frames of all utterances of that speaker. The data used for
SVD, i.e., for calculating the projection function into principal component
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space is either

Method 1 the data from the target speaker

Method 2 the data from all three speakers (including the target speaker)

Method 3 the data from the two other speakers (excluding the target
speaker).

Especially the third case is of high relevance in an adaptation scenario, as
the data of the target speaker is typically not part of the training data for
the average voice. Intuitively, we expect this to be the most challenging of
the three scenarios. But also the second case can be of practical relevance:
when we want to put all available data to optimal use, it might be beneficial
to include the target speaker in the average voice.

First, we consider the objective reconstruction error. This should bring
insight to the behavior of the three methods mentioned above, to under-
standing the role of certain markers, as well as to the influence of k, the
number of kept dimensions. Then, the results of a subjective evaluation are
presented which was carried out with 40 test subjects. The main purpose of
this is to provide a basis for deciding on the value of k.

Objective Evaluation via Reconstruction Error

Given a matrix Uk containing the first k columns of a matrix U resulting
from SVD (as described in Section 4.4.1), we define the reconstruction of a
data matrixA, containing a target speaker’s utterances stacked horizontally,
as

Ārec = Uk ·UT
k · Ā. (4.9)

Re-adding A’s sample mean to Ārec gives us Arec, and we can compute the
error matrix E = A −Arec. Let N denote the total number of frames in
all utterances of the target speaker, i.e., A, Ā, Ārec, Arec and E are all of
size 99×N , while Uk is of size 99× k. Finally, we define the reconstruction
error as the Root Mean Squared Error (RMSE) across all elements eij of
E:

RMSE =

√√√√ 1
99N

99∑
i=1

N∑
j=1

eij2. (4.10)

We have computed the RMSE for all k ∈ {1, . . . , 99} and for each of the
nine conditions resulting from the combination of each of our three speakers
as target speaker with one of the three methods to compute the SVD as
described above. The results are shown in Figure 4.5. The points are labeled
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Figure 4.5: PCA reconstruction error (RMSE) for the nine different condi-
tions and varying k. In the labels of the legend, the identifier of the target
speaker is given before the period, and the identifiers of the speakers used
to compute U via SVD are given after the period.

with the target speaker before the period and all speakers that were used in
the SVD after the period.

Overall, we see our intuition confirmed: using only 6 of 99 dimensions yields
an RMSE of less than 1mm in all nine conditions. The three speaker-specific
versions (red) produce the best results, as expected. Their RMSEs lie even
below 0.5mm at k = 6. The three versions with all speakers in the SVD
(green) are a bit worse than that, and as expected the three held-out versions
(blue) yield the worst results. It takes 35 dimensions for the particularly
bad nke.dsc+mpu to reach an RMSE below 0.5mm.

Although the methods of the third kind produce a larger reconstruction
error than the others, they still show the same overall behavior (shape of the
curves in Figure 4.5), namely that the first few dimensions make a very big
difference in the results, and that the error levels off towards the larger values
of k. This means that we have the positive result that it is possible to project
some speaker’s data into a much smaller subspace, where the definition of
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Figure 4.6: PCA reconstruction error (RMSE) for each marker and SVD
method, averaged across all target speakers and 3D coordinates, at k = 6.

the subspace and the projection into it were determined without using any
data from that speaker, without making a large reconstruction error, given
that we do not choose the value of k too aggressively.

Rather than taking the mean across the entire error matrix E, we can also
look at the means of each row, which corresponds to the mean error for
a certain coordinate of a certain marker. Figure 4.6 shows the RMSE for
each marker and each of the three methods (using just the target speaker
for SVD, using all three speakers for SVD, using the respective other two
speakers for SVD). The plotted values are means across all target speakers,
3D coordinates and of course frames, for a fixed value of k = 6. We can see
that the markers in the region of the mouth (*Lip*, *Mouth*, *Jaw*) are
responsible for the largest errors. Also, we see again how the third method
(held-out) is consistently worse than the second (all speakers), which is in
turn consistently worse than the first (speaker-specific).

Subjective Evaluation via Perceptive Experiments

Based on the objective evaluation alone, it would be difficult to choose a
value for k to proceed to actual training and synthesis. It is not clear a priori
what an RMSE of, e.g., 1mm means perceptually, or in other words it is not
clear how small we can choose k without perceived degradation in quality.
To clarify this, we have carried out a subjective perceptual experiment with
40 non-expert test subjects (half females and half males, aged 20–68 years).
This experiment was designed as follows.
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4.4 Feature Extraction

Figure 4.7: Example frame from a subjective evaluation video, showing
original motion (right) and reconstructed motion (left) side by side.

We have created videos of marker renderings, where for each frame of an
utterance, a white cube is drawn on a black background for each of the 33
markers at the 3D position of that marker in that frame. Note that we
deliberately chose not to apply the marker motion to a virtual head and use
renderings of the animated head in the evaluation, because we wanted to
make sure the quality (or lack of quality) of the retargeting or the visual
appearance of the head do not skew the evaluation results. In each video,
we showed a rendering of the originally recorded data side by side with
a rendering of a reconstruction using a certain value of k. This leads to
renderings as the one shown in Figure 4.7.9 Then the test subjects were
asked to decide whether the two renderings were different or the same from
their point of view. Whether the original was on the left or on the right was
chosen randomly for each video.

We used the first five sentences of our corpus as test sentences, and each
test subject saw one comparison for each test sentence and each of the nine
conditions (cf. Figure 4.5), i.e., 45 comparisons in total. We have selected
values of k with respect to the reconstruction error: For each of the nine
conditions, we have partitioned the set of 99 possible values for k into 19
bins, where each bin amounts for a similar percentage of the overall error.
We also added a twentieth bin containing only the last value (k = 99).
We then selected the middle value of each bin as its representative. Each
test subject saw at least one comparison from each bin, with the remaining
comparisons distributed randomly. Table 4.1 shows for target speaker nke
which values of k belonged to which of the 20 bins in each of the three
methods.

This leads to a denser sampling in the lower region, where one additional
9A video showing examples is available at http://schabus.xyz/phd/pcaevaluation.
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Table 4.1: Partitioning of the values of k for target speaker nke.

Bin Method 1 Method 2 Method 3

1 1 1 1
2 2 2 2–3
3 3 3 4–5
4 4 4–5 6–8
5 5–6 6–7 9–11
6 7–8 8–9 12–14
7 9–10 10–11 15–17
8 11–12 12–14 18–21
9 13–15 15–17 22–25
10 16–18 18–20 26–29
11 19–21 21–24 30–33
12 22–25 25–28 34–38
13 26–29 29–33 39–43
14 30–34 34–38 44–49
15 35–40 39–44 50–55
16 41–47 45–52 56–62
17 48–56 53–62 63–70
18 57–70 63–78 71–80
19 71–99 79–99 81–99
20 99 99 99

dimension makes a big difference, and a sparser sampling in the higher
region, where one additional dimension makes a small difference. The entire
evaluation thus amounts to 900 comparisons (9 methods × 5 sentences ×
20 bins), for each of which we have two votes from two different subjects.
Therefore the results contain a total of 1800 votes.

The results are shown in Figure 4.8, where we have plotted the percentage
of “different” votes for each of the 20 bins (top), and the same data ad-
ditionally separated by method (bottom). We see that the general picture
is in agreement with what we know from the objective error, namely that
reconstructions with low values of k (left side of Figure 4.8) are perceived
as being mostly different from the original, that small changes to k have a
shrinking influence with growing k, and that the difference levels off towards
the upper end of the scale (right side of Figure 4.8).

However, the actual values of the evaluation at the extreme points are some-
what surprising: The reconstructions corresponding to the first bin are very
poor in terms of the objective error and should look clearly different from
the original, yet in 13 of the 90 comparisons (14%) they were perceived as
being equal by the test subjects. Similarly, at the other end of the scale,
the reconstructions with k = 99 in bin 20 are per definition error-free, as
the projection into principal component space and back are mere rotations
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Figure 4.8: Results of the subjective evaluation: Percentage of “different”
votes per bin (top) and per bin and method (bottom).

of the coordinate system.10 Nevertheless, in 21 out of 90 cases (23%) they
were judged as being different from the original.

We believe some of this uncertainty in the results can be ascribed to the
difficulty of the task. Even if the marker motion is quite different from the
original for low values of k, the overall appearance of the two renderings
is very similar. Furthermore, the sequence of comparison examples is quite
uniform, which could lead to effects of boredom.

This uncertainty also makes it difficult to compare the three methods to
10The actual RMSE in our implementation was always < 10−15.
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Table 4.2: Significant differences in perception: Results of paired Wilcoxon
signed rank tests between votes for each bin, with (�) and without Bonfer-
roni correction (�). The symbol “·” indicates no significant difference.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 · � � � � � � � � � � � � � � � � � � �
2 � · · � � � � � � � � � � � � � � � � �
3 � · · � � � � � � � � � � � � � � � � �
4 � � � · · · · � · · · � � � � � � � � �
5 � � � · · · · · · · · · · · · � · � � �
6 � � � · · · · · · · · · · · � � · � � �
7 � � � · · · · · · · · · · · � � � � � �
8 � � � � · · · · · · · · · · · · · · · ·
9 � � � · · · · · · · · · · · · � · · · ·
10 � � � · · · · · · · · · · · · � · · · ·
11 � � � · · · · · · · · · · · · � · � � �
12 � � � � · · · · · · · · · · · · · · · ·
13 � � � � · · · · · · · · · · · · · · · ·
14 � � � � · · · · · · · · · · · · · · · ·
15 � � � � · � � · · · · · · · · · · · · ·
16 � � � � � � � · � � � · · · · · · · · ·
17 � � � � · · � · · · · · · · · · · · · ·
18 � � � � � � � · · · � · · · · · · · · ·
19 � � � � � � � · · · � · · · · · · · · ·
20 � � � � � � � · · · � · · · · · · · · ·

each other based on the subjective data. The bottom part of Figure 4.8
illustrates that the data does not allow for drawing clear conclusions in this
regard.

To assess the statistical significance of the differences between the bins’
results, we have computed Bonferroni-corrected paired Wilcoxon signed rank
tests between the votes of each pair of bins. The pairing of votes was based
on the method and utterance only, i.e., we ignored which test subject cast
a particular vote. The results are shown in Table 4.2, where the symbol
“�” indicates a significant difference (α = 0.05). In this rather restrictive
setting (due to Bonferroni correction the value of α for each of the 190 tests is
0.05/190 ≈ 0.00026), only the first four bins show significant differences from
some of the other bins, i.e., none of the bins from 5 to 20 differ significantly
from each other.

This result tells us that we need to choose k from a bin ≥ 4 at the very
least, and it even suggests that choosing from bin number 4 is sufficient, since
larger values do not lead to significantly better results anyway. However, the
conservativeness of Bonferroni correction would act in our advantage here,
because it reduces the probability of false positives (type I error) at the
cost of an increased probability of false negatives (type II error). We should
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not choose k too small because of some significant differences that were
missed due to the Bonferroni correction. Therefore, Table 4.2 also shows
the additional significances of the same test without Bonferroni correction,
indicated by the symbol “�”. This result is quite likely to contain some false
positives, but there is nevertheless the set of bins {12, ..., 20} where there are
no significant differences. Therefore, by selecting the smallest k larger than
any k from bin 11 (k = 33) we still make a conservative choice. However,
the final k = 33 still accounts for a great reduction in dimensionality: Two
thirds of the initial 99 degrees of freedom could be removed.

Discussion

Overall, both the objective and the subjective evaluation have provided
results in general agreement with the expectations. With growing k, the
results improve quickly at first, and finally level off—towards zero in the
objective case and towards “background noise” of uncertainty in the subjec-
tive case. The reconstruction error evaluation clearly showed the difference
in performance between the three methods, something which the subjective
method failed to show. However, the user votes provide an excellent basis
for selecting an actual value for k that defines the number of dimensions
employed in both training and synthesis.

4.5 Model Training and Synthesis of Speech Mo-
tion

After we have defined the visual features as discussed in the previous section,
we can view the steps of computing the PCA on the marker data and the
projection into a reduced k-dimensional PCA space as the feature extrac-
tion procedure for the visual data, similar to the speech feature extraction
discussed in Chapter 3: Some computation is applied to the recorded signal,
resulting in feature vector sequences; these are used as training data to esti-
mate HSMM parameters; synthesizing from the HSMMs will again produce
such feature vector sequences for new textual input; and finally the inverse
of the analysis procedure is applied to turn the synthesized feature vectors
into a full signal again.

Because the visual recordings are already of relatively low temporal res-
olution (100Hz) there is no need for further reduction. As discussed in
Chapter 3, the feature extraction procedure for the acoustic speech signal
resulted in a change from 44 100Hz in one dimension to 200Hz in 66 dimen-
sions. In order to match the temporal resolution of the audio features, the
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Figure 4.9: Structure of an audiovisual feature vector consisting of acoustic
speech features and visual speech features of one point in time.

visual features can be “inflated” from 100Hz to 200Hz using cubic inter-
polation. After this, a combined observation vector consisting of spectral,
fundamental frequency, aperiodicity and visual features can be assembled
for each point in time, as depicted in Figure 4.9 (cf. Figure 3.4). Just like
for the acoustic features, first and second order time differences are added
for the visual features to capture the dynamics of the signal.

Using such observations, it is fairly straightforward to train a text-to-audio-
visual speech synthesizer. The HSMM training procedure needs to be mod-
ified to include this additional feature stream, with separate clustering trees
for the visual features (just like the different acoustic features, which are also
clustered independently). We may also simply build an observation consist-
ing of visual features only, for a text-to-visual speech system. In either case,
after training we may carry out text-to-observation sequence synthesis in
the same way as for audio-only modeling, as described in Chapter 3. The
generated PCA-space vectors can be re-projected into the full-dimensional
space using the projection matrix from SVD before training, resulting in
facial marker trajectories. These can be applied to a 3D head model using
a retargeting function, to obtain a 3D facial animation, which can finally be
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Figure 4.10: Overview of a speaker-dependent audiovisual speech synthe-
sis system, which consists of three main components: audiovisual speech
analysis, audiovisual training, and audiovisual speech generation. The cor-
responding audio-only system does not include the red parts, and the cor-
responding visual-only system does not include the blue parts.

rendered to a video file or plugged into a 3D game, etc. Figure 4.10 provides
an overview of the audiovisual HSMM-based system. By removing the red
parts of the figure, an audio-only system is obtained (identical to Figure 3.7
from Chapter 3). By removing the blue parts of the figure, a visual-only
system is obtained.

For the experiments in this dissertation, the training scripts published by
the Centre for Speech Technology Research (CSTR) of the University of
Edinburgh in the project Effective Multilingual Interaction in Mobile En-
vironments (EMIME)11 have been adapted for visual/audiovisual training
and synthesis. The CSTR/EMIME scripts use HTS version 2.1.

11http://emime.org
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Before concluding this chapter on the audiovisual speech synthesis pipeline,
it should be emphasized once more that the investigations in this disser-
tation focus on speech motion trajectory modeling and synthesis, and that
the construction of a detailed 3D face representation as well as the prob-
lem of detailed deformation driven by low-dimensional control parameters
are considered separate problems which are not addressed in this disserta-
tion. In particular, the trajectories used for training and synthesis come
from a marker-based facial motion capturing system, and the problem of
retargeting such trajectories to a high-resolution head model is solved by
a given retargeting function included with the head model distributed by
the tracking system manufacturer. However, the applied HSMM training
and synthesis procedures are not limited to this particular setup, the same
methodology can be used for other time series representations of speech mo-
tion, coming from other sources. For example, given a collection of speech
animation in the form of blend shape parameter sequences (which are com-
mon in the animation industry), either hand-animated or based on some
performance capturing technology, could be used to train an HSMM-based
synthesis system in the exact same way.
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Chapter 5

Audiovisual Speech
Corpora

This chapter describes the audiovisual speech data corpora that were created
for the research in this dissertation: 1) One corpus of three speakers from
the project team, each reading 223 Standard Austrian German utterances,
2) one corpus of eight speakers from two specific Austrian towns, each pro-
ducing around 650 utterances in their respective dialect plus 223 utterances
in Standard Austrian German, and 3) a corpus of a single speaker reading
320 Standard Austrian German utterances at normal, fast and slow speaking
rate. All three were recorded as described in the previous chapter, i.e., using
the OptiTrack system for recording facial motion with synchronous studio-
quality audio recordings. For the third corpus, an electromagnetic articula-
tor tracking system was additionally used to record tongue motion. Parts
of this chapter have been previously published in Schabus et al. (2012a),
Schabus et al. (2014a) and Schabus et al. (2014b).

For data-driven speech technology research, training corpora of speech data
are an essential asset that is often created and used by research groups
when required, but less often made available for the general research com-
munity. The creation of high-quality annotated corpora is a highly time-
consuming and hence expensive task. This is true to an even larger extent
when multiple modalities are recorded simultaneously, because of the ad-
ditional requirement of synchronization between the different modalities.
Furthermore, corpora including data acquired using special hardware, like
motion capturing and Electro-Magnetic Articulography (EMA), are even
more expensive to create because the equipment itself and the know-how
to operate it are required for recording. To our knowledge, there are only
two corpora of EMA data available free of charge, both from the University
of Edinburgh (Wrench, 1999; Richmond et al., 2011). As far as speech fa-
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cial motion capture data is concerned, there is for example a corpus of 10
speakers in affective dyadic interaction in American English (Busso et al.,
2008).1

In order to improve this situation, the first and third corpus have already
been made publicly available on the Internet, free of charge, for research
purposes. The dialect speaker corpus will also be released in a similar fashion
at a later point in time.

5.1 Face Motion and Speech Corpus (FMSC)

In a first recording round, three members of the project team (one female and
two males, including the author) were recorded, reading the same recording
script in standard Austrian German. The script contains sentences from
a well-known German text corpus (100 “Berlin” sentences, 100 “Marburg”
sentences, 16 “Buttergeschichte” sentences, 7 “Nordwind und Sonne” sen-
tences). It is phonetically balanced, i.e., it contains all phonemes in relation
to their appearance in German, and it contains utterances of varying length,
to cover some prosodic variance (phrase breaks, etc.). It amounts to 223 ut-
terances and roughly 11 minutes total for each of the speakers. Speech
and facial motion were recorded as described at the beginning of Chapter 4
(facial motion capturing with OptiTrack system, studio-quality audio). A
description of the FMSC corpus was published by Schabus et al. (2012a),
and the data is available from http://schabus.xyz/phd/fmsc.

5.2 Bad Goisern and Innervillgraten Dialect
Speech Corpus (GIDS)

To investigate the influence of dialectal variation on audiovisual speech, eight
dialect speakers were recorded in the AVDS project: Two female and two
male speakers from Bad Goisern, a town in the Salzkammergut region; and
two female and two male speakers from Innervillgraten, a town in the Ost-
tirol region. The variety of German spoken in Bad Goisern belongs to the
Central Bavarian group, whereas the variety spoken in Innervillgraten be-
longs to the Southern Bavarian group (Hornung et al., 2000), as illustrated
in Figure 5.1. The two dialects are quite different from each other and both
are also quite different from standard Austrian German. A recording script
for each of the two variants was created within the project AVDS, amount-
ing to 665 utterances for the Bad Goisern dialect and 656 utterances for the
Innervillgraten dialect. As described by Toman et al. (2013b), this recording

1http://sail.usc.edu/iemocap/
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Figure 5.1: Geographic distribution of Upper German dialects, with the two
towns of the recorded dialects highlighted. Image adapted from a public-
domain image.2

script, as well as the corresponding phone set and transcriptions, were cre-
ated in the following way: Per dialect, 18–20 hours of speech material of at
least 10 speakers was collected by a phonetician in the respective town (no
studio recording conditions). This material consisted of spontaneous speech
elicited with given keywords, as well as translations from standard Ger-
man given spontaneously by the dialect speakers. Next, this material was
carefully analyzed phonetically and sentences were selected to be included
in the recording script. All selected utterances were manually transcribed,
thus providing a phone set and pronunciation dictionary, in addition to the
transcriptions themselves.

Two female and two male speakers were selected for each dialect, based
on fulfillment of the following linguistic criteria, which were assessed by a
phonetician in the project team:

• Raised within the respective dialect (i.e., “native speaker”)

• Consistent application of characteristic phonological processes (e.g.,
2http://commons.wikimedia.org/wiki/File:Oberdeutsche_Dialekte.png
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assimilations, deletions)

• Lexical knowledge and morpho-syntactic competence

These speakers were then recorded under the same conditions as described
above for the project team members (motion capturing and audio under
studio conditions). Because there are no defined orthographies for German
dialects, producing dialect for read text is problematic, as the speakers would
need to carry out a kind of translation from the written text to the spoken
dialectal utterance. Therefore, a dialectal recording of each utterance was
presented to the speakers as audio, while the words were displayed on a
computer screen in standard German orthography.

Additionally, the same 223 utterances corpus of standard Austrian German
as in the FMSC corpus were also recorded from the dialect speakers. The
GIDS corpus of the eight dialect speakers will be released to the research
community at a later point in time.

5.3 Multi-Modal Annotated Synchronous Corpus
of Speech (MMASCS)

A detailed description of the third corpus, which includes also tongue motion
recordings, was published by Schabus et al. (2014a), on which this section
is largely based. The data of the MMASCS corpus is available under http:
//schabus.xyz/phd/mmascs.

This new corpus differs from existing ones in several aspects. Most impor-
tantly, it combines facial motion capture data with intra-oral EMA data. In
comparison to optical motion capturing only, this has the obvious advan-
tage of also providing tongue motion data, which is impossible to capture
optically. In comparison to EMA data only, it has the advantage of pro-
viding a larger number of tracked points on the lips, eyelids, eyebrows and
other areas of the face. While it is in principle possible to use EMA coils
also on the face surface, the inexpensive and easy-to-attach optical markers
are much less intrusive for the speaker than the EMA coils with their cable
connection (one cable per coil) to the articulograph. Another difference is
that our data is for Austrian German speech. One can imagine that it might
be interesting to investigate inter-lingual differences in speech motion, once
a larger number of corpora (of EMA and/or facial motion data) in various
languages is available (of course speaker-specific effects would need to be
accounted for). Finally, our data is different in that it comprises data of
speech at three different speaking rates (normal, fast and slow).

In addition to general analytic usages, this corpus can be useful for other
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fields of research. For example, in the context of 3D facial speech motion
synthesis based on facial motion capturing data, where the additional tongue
data can be used to train an additional synthesizer for tongue motion, similar
to Beskow (2003). Cross-modality control models for speech synthesis, which
have been investigated using EMA data and speech (Ling et al., 2008; Ling
et al., 2009) and using facial motion data and speech (Hollenstein et al.,
2013) can benefit from the usage of all three modalities in combination.
Finally, we have used speech data at normal and fast speaking rates before
to create ultra-fast synthetic speech via interpolation (Pucher et al., 2010a;
Valentini-Botinhao et al., 2014). Incorporating additionally face and tongue
motion data into such a system for ultra-fast speech might improve modeling
and hence synthesis results.

5.3.1 Recordings

We have recorded a 30-year old male native speaker of Austrian German
(the author of this dissertation) reading 320 phonetically diverse sentences
off a computer screen. The recordings took place at the premises of Ludwig-
Maximilians-Universität in Munich, inside a Studio Box Premium recording
booth.3 223 sentences of the recording script are the same as for the FMSC
corpus and the Standard Austrian German part of the GIDS corpus. The
remaining 97 sentences were selected automatically from a large newspaper
text collection based on the improvement caused when added to the selection
with respect to the representation of the di-phone occurrence distribution
in the entire large corpus.

As with the other corpora, facial movement was recorded using the Opti-
Track system, as described in Chapter 4. Articulatory movement was record-
ed with a Carstens Medizinelektronik Articulograph AG501 EMA system.4
In contrast to its predecessor AG500, the AG501 does not feature an acrylic
glass cube around the speaker’s head, which rendered simultaneous optical
marker recording impossible. The AG501 produces alternating magnetic
fields, thus inducing currents in the sensor coils attached to the speaker’s
tongue and mouth. The currents are transmitted via a cable from each sen-
sor to the measurement unit, where they are measured and recorded. From
these measurements, the system’s software computes the 3D position of each
sensor coil at 250Hz. Articulatory sensors were placed on the back, mid-
dle and tip of the tongue, on the gums above the incisors and on the nasal
bridge (all five on the mid-sagittal plane). Two more sensors were placed
behind the ears, and finally an eighth sensor was placed on the lower lip,
between the central lower lip and right lower lip markers of the OptiTrack

3http://www.acousticbooth-studiobox.com
4http://www.articulograph.de
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Figure 5.2: Placement of facial markers and EMA coils.

(a) (b)

Figure 5.3: Example frames from the gray scale video from the OptiTrack
system (a) and the color video from the camcorder (b).

system. Figure 5.2 shows the position of most EMA sensors, as well as the
facial markers for the optical system. Using the sensors on the nasal bridge,
above the incisors and behind the ears, rigid head motion can be removed
from the data. The EMA data was filtered using a finite impulse response
low pass filter (Kaiser window) with cutoff frequencies of 40Hz (tongue tip),
20Hz (tongue middle, tongue back, lower lip), and 5Hz (behind ears, upper
incisors, nasal bridge).

Audio was recorded with a Sennheiser ME66 supercardioid microphone, with
a John Hardy M1 pre-amplifier. The microphone signal as well as the syn-
chronization signals from the EMA and OptiTrack systems were captured
with a National Instruments Compact DAQ system at 25 600Hz. Audio is
encoded as 32-bit floating point PCM.

Additional video footage was recorded with a Sony DSR-PD100AP digital
camcorder at 25 frames per second (50 fields interlaced) and from an al-
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most frontal view. Figure 5.3 shows example frames from the two kinds of
videos.

All 320 sentences were first recorded at a normal speaking rate, then again
at a fast speaking rate and then again at a slow speaking rate, in direct suc-
cession with short breaks. Unfortunately, one of the tongue coils disengaged
during the slow part, and the recordings had to be aborted after 130 slow
sentences.

5.3.2 Release and Playback Software

For the release, the data has been synchronized and cut into separate files per
utterance, in all modalities (audio, video, EMA data, facial movement data).
Phone borders were determined by a flat-start forced alignment procedure
using HTK (Young et al., 2006) and the resulting quin-phone full-context
HTK label files and mono-phone label files are part of the release. Tracking
errors, which are common in optical motion capturing (like marker swaps,
trajectory gaps, etc.) have been manually corrected to a large extent. EMA
data and facial marker data have been aligned in coordinate space based on
the position of the markers on the nasal bridge of the two systems, after
rigid head motion has been removed from both 3D data streams.

The facial motion and EMA data are provided in the form of text files
containing matrices that represent spatial coordinates of markers/coils per
row, with one column per time frame. Audio data is provided in the form of
RIFF wave audio files, mono channel, 25 600Hz, 16-bit signed integer PCM
encoding. Video data is provided in the form of H264/AAC MPEG-4 video
files.

The release also contains a playback software implemented in Python using
OpenGL5, which visualizes the 3D data (facial markers and tongue coils)
and also simultaneously plays back the corresponding audio. Figure 5.4
shows a screen shot of this software.

5.3.3 Data Analysis

To get a better understanding of the data we have recorded, we performed
a statistical analysis of the corpus. As already mentioned, we have 320
sentences for both normal and fast speaking rate, and 130 sentences for slow
speaking rate. For symmetry, all analytics in this section are based on the
130 sentences which we have available in all three speaking rates.

5http://www.opengl.org
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Figure 5.4: Screen shot of 3D data visualization software included in the
corpus release.
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Figure 5.5: Boxplots of utterance durations for the three speaking rates
(outliers not shown).

Figure 5.5 shows the distributions of the utterance durations for the three
speaking rates as boxplots, disregarding initial and terminal silences and
intra-utterance pauses. As the same 130 sentences were used, the figure
shows that there is a significant difference in duration between the three
speaking rates.

To quantify the different speaking rates in more depth, we have looked at the
phone durations as determined by the flat-start forced alignment procedure.
Figure 5.6 shows boxplots of the phone durations, excluding all silences and
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Figure 5.6: Boxplots of phone durations for the three speaking rates (outliers
not shown).
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Figure 5.7: Boxplots of phone durations of some common short and long
vowels, for the three speaking rates (outliers not shown).
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pauses. The median phone durations for the slow, normal and fast speaking
rate data are 160ms, 82ms and 58ms, respectively, which are equivalent
to 375, 732 and 1034 phones per minute, respectively. In addition to the
occurrence of longer phones, the data also show a larger variability in phone
duration with decreasing speaking rate. Furthermore, when we partition this
data by phone, we can observe that the change of duration between speaking
rates is larger for long vowels and diphthongs than for short vowels and stops.
This is illustrated in Figure 5.7, which shows the duration distributions for
some common short and long vowels.

To achieve a faster speaking rate, i.e., to articulate the same sequence of
phones in a shorter time, three factors can be modified: 1) the velocity of the
articulator movements can be increased, 2) the distance between the target
articulator positions can be reduced, and/or 3) the duration of phases with
stable articulator position can be shortened. Given the data of our corpus,
the first two are straightforward to assess, and shall be investigated in the
following.

Regarding the first factor, we have computed the movement velocities for
the three tongue sensors based on the distance traveled between every two
consecutive frames of the EMA trajectories. Figure 5.8 shows the distri-
butions of peak velocities (greatest velocity within a phone) for the three
speaking rates. Although this data may contain some noise, the increase
in tongue motion velocity from slow to normal and from normal to fast
speaking rate is clearly visible. The same data, but partitioned by phone,
is shown in Figure 5.9. Again, this data is not completely reliable due to
possible problems in the automatic alignment and possible tracking errors,
and due to the fact that some phones do not occur very often in the corpus.
Nevertheless, it is interesting to see that the order of phones is quite similar
across the three speaking rates when sorted by median (as in Figure 5.9).
In particular, phones near the close/front corner of the IPA vowel chart ([i],
[i:], [y], [y:], [I], [Y], [e:], [ø:]) and certain fricatives ([s], [S], [ç]) exhibit
low peak velocities (and thus appear close to the bottom of Figure 5.9),
whereas vowels far from the close/front corner ([u:], [U], [o:], [O], [a]) and
diphthongs exhibit high peak velocities (and thus appear close to the top of
Figure 5.9).

Regarding the second factor, i.e., the influence of speaking rate on tongue
target positions, we have gathered for each of the three tongue sensors (back,
middle and tip of the tongue) the deviation from its average position, as
shown in the boxplots of Figure 5.10. The figure shows each of the x, y and
z coordinates separately, which correspond to the left/right, up/down and
front/back directions from the speaker’s point of view. A slight decrease
in positional variability can be seen for increased speaking rate, suggesting
that tongue movement needs to be reduced for faster speech.
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Figure 5.8: Boxplots of peak movement velocities of the three tongue sensors
(outliers not shown).
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Figure 5.9: Boxplots of peak movement velocities of the three tongue sen-
sors per phone (outliers not shown), for (a) slow, (b) normal, and (c) fast
speaking rates.

109



5 Audiovisual Speech Corpora

−15 −10 −5 0 5 10 15

millimeters

back z fast
back z normal
back z slow
back y fast
back y normal
back y slow
back x fast
back x normal
back x slow
mid z fast
mid z normal
mid z slow
mid y fast
mid y normal
mid y slow
mid x fast
mid x normal
mid x slow
tip z fast
tip z normal
tip z slow
tip y fast
tip y normal
tip y slow
tip x fast
tip x normal
tip x slow

Figure 5.10: Boxplots of mean-normalized spatial coordinates of the three
tongue sensors (outliers not shown).

These findings are in line with, e.g., Flege (1988), where increased speaking
rate is reported to result from a combination of both increased movement
velocity and decreased divergence of the tongue from a “centroid” or “rest”
position.

Similar to Yehia et al. (1998); Jiang et al. (2000); Beskow (2003), we have
also looked at how well the tongue motion data can be predicted from the
facial motion data and vice versa. In a 10-fold cross validation setup, we
have computed a linear regression to predict one tenth of the tongue (face)
data from the corresponding face (tongue) data, where the other nine tenths
of the data are used to estimate the predictor. Then Pearson’s correlation
coefficients are computed between the predicted and the originally recorded
tongue (face) data. Note that we excluded the face markers on the eyebrows
and eyelids for this analysis step because their movement can be expected
to be unrelated to phone articulation. The average correlation coefficients
resulting from this procedure are shown in Table 5.1. The results are com-
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Table 5.1: Average Pearson’s correlation coefficients between measured and
predicted marker coordinates.

Speaking Rate Face from Tongue Tongue from Face

Slow 0.234 0.445
Normal 0.226 0.558
Fast 0.279 0.523

Table 5.2: Number of recorded utterances per corpus, speaker and variety:
standard Austrian German (SAG), Bad Goisern dialect (GOI), Innvervill-
graten dialect (IVG).

Corpus Name Speaker Gender #SAG #GOI #IVG speaking rate

FMSC SF1 female 223 normal
FMSC SM1 male 223 normal
FMSC SM2 male 223 normal
GIDS GF1 female 223 665 normal
GIDS GF2 female 223 665 normal
GIDS GM1 male 223 665 normal
GIDS GM2 male 223 665 normal
GIDS IF1 female 223 656 normal
GIDS IF2 female 223 656 normal
GIDS IM1 male 223 656 normal
GIDS IM2 male 223 656 normal
MMASCS SM2 male 223 normal
MMASCS SM2 male 223 fast
MMASCS SM2 male 130 slow

parable to the ones of the “Sentences, 3 coils” condition6 of Beskow (2003)
(tongue from face: 0.525, face from tongue: 0.357), which is the condition
most similar to our setup. It can be seen that prediction of tongue motion
from face motion is more successful than prediction in the opposite direc-
tion. There does not seem to be a clear influence of speaking rate on the
predictability of tongue motion from face motion and vice versa.

To conclude this chapter on the data collections produced for this disser-
tation, Table 5.2 gives an overview of all recorded data of the three cor-
pora.

6Using sentence recordings rather than nonsense vowel-consonant-vowel and consonant-
vowel-consonant utterances; using 3 tongue coils only rather than including also jaw and
lip coils.
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Chapter 6

Synchronization of Speech
and Motion

This chapter investigates joint audiovisual HSMMs as a way of addressing
the problem of synchronization between the generated acoustic and visual
speech. This chapter is closely related to an earlier publication (Schabus et
al., 2014a). Different acoustic, visual, and joint audiovisual models for four
different Austrian German speakers were trained and we show that the joint
models perform better compared to other approaches in terms of synchro-
nization quality of the synthesized visual speech. In addition, a detailed
analysis of the acoustic and visual alignment is provided for the different
models. Importantly, the joint audiovisual modeling does not decrease the
acoustic synthetic speech quality compared to acoustic-only modeling so
that there is a clear advantage in the common duration model of the joint
audiovisual modeling approach that is used for synchronizing acoustic and
visual parameter sequences.

6.1 Introduction

Chapter 2 presented existing approaches/systems for audiovisual speech syn-
thesis, making a distinction between image-based methods and methods us-
ing 3D head models. The work presented in this dissertation belongs to the
latter category, as described in Chapter 4. Regardless of the way the visual
speech signal is captured and represented, the two signals generated by an
audiovisual speech synthesis system need to be correctly synchronized in
order to deliver a believable experience of bi-modal speech to the user, as
already briefly discussed at the end of Chapter 2. To this end, this chapter
proposes a joint audiovisual HSMM-based approach, where audible speech
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and facial motion are combined into a single bi-modal model.

In statistical data-driven audiovisual synthesis, commonly separate acoustic
and visual models are trained (L. Wang et al., 2011b; Sako et al., 2000; Ma-
suko et al., 1998; Tamura et al., 1998a; Hofer and Richmond, 2010; Hofer
et al., 2008), sometimes together with an additional explicit time differ-
ence model to correctly synchronize the two modalities (Govokhina et al.,
2007; Bailly et al., 2009). In contrast, we propose to train one joint audio-
visual model (with acoustic and visual streams), such that the likelihood
of the model generating the training data is maximized globally, across
the two modalities, during model parameter estimation. This results in
a single duration model used for both modalities, thus eliminating the need
for additional synchronization measures. In this way, we intend to create
simple and direct models for audiovisual speech synthesis, which can cope
with most effects of co-articulation and inter-modal asynchrony naturally
through five-state quin-phone full-context modeling. Bailly et al., 2009 also
argue that states can capture some inter-modal asynchrony since transient
and stable parts of the trajectories of different modalities need not neces-
sarily be modeled by the same state, and that multi-phone context models
can capture co-articulation effects. Notably, an early work on audiovisual
HMM-synthesis (Tamura et al., 1999) also applied joint modeling in our
sense, however without investigating its benefits in detail. Also, the current
HMM-modeling techniques and high-fidelity visual parameter acquisition we
use distinguish our work from Tamura et al., 1999.

Therefore the main purpose of this chapter is to investigate whether the
proposed joint audiovisual modeling approach provides clear improvements
over separate audio and visual modeling. We argue that the main weakness
of separate modeling stems from the difficulty to capture (and even define)
clear temporal unit borders for the visual modality. Our analysis shows that
visual-only training yields models which fail to find suitable borders for some
phones when we carry out forced alignment on our training data. An explicit
audio/video lag model used for modality synchronization, which is trained
on such borders (as by Govokhina et al., 2007 and Bailly et al., 2009) might
still suffer from these problems, even if the borders in the training data
are hand-labeled (as done by Terry, 2011). Furthermore, the quality of the
synthesized trajectories themselves can be expected to degrade if observation
assignment to units is unclear during training.

On the other hand, there are situations where the targets to which speech
needs to be synchronized are much clearer, like singing synthesis (Saino et
al., 2006), where explicit lag models have been used successfully for synchro-
nizing speech to sheet music (in that case, the sheet music defines fixed and
exact synchronization target points in time).

By using the system pipeline described in Chapter 4, we employ a state-of-
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Figure 6.1: Frames from grayscale videos showing facial marker layout (top)
for four different speakers and corresponding renderings of 3D marker data
(bottom).

the-art HSMM modeling framework and we use current animation-industry-
standard motion tracking and character animation technology for the visual
modality. In this regard our work differs strongly from conceptually re-
lated previous work (Sako et al., 2000; Masuko et al., 1998; Tamura et al.,
1998a).

6.2 System Description

For the investigations in this chapter, the recordings in Standard Austrian
German from the four male dialect speakers of the GIDS corpus (cf. Chap-
ter 5) were used as training data, which amounts to 223 utterances and
roughly 11 minutes total per speaker. Global head motion removal, posi-
tional normalization and PCA-based visual feature extraction were carried
out as discussed in Chapter 4, using k = 30 dimensions for the visual signal.
Figure 6.1 shows example frames for the four speakers.

For training regular audio speech models, we used the CSTR/EMIME TTS
system training scripts (Yamagishi and Watts, 2010) and HTS version 2.1 to
train context-dependent, five-state, left-to-right, MSD-HSMMs (Zen et al.,
2007d). As audio features we used 39+1 mel-cepstral features, log F0 and
25 band-limited aperiodicity measures, extracted from 44.1 kHz speech, as
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it is done in the CSTR/EMIME system. Speech signals are re-synthesized
from these features using the STRAIGHT vocoder (Kawahara et al., 1999).
All features are augmented by their dynamic features (∆ and ∆2) (Tokuda
et al., 1995). For each of the three audio features, the models are clustered
separately state-wise by means of decision-tree based context clustering us-
ing linguistically motivated questions on the phonetic, segmental, syllable,
word and utterance levels. State durations are modeled explicitly rather
than via state transition probabilities (HSMMs rather than HMMs, Zen et
al., 2004), and duration models are also clustered using a single decision-tree
across all five states. The feature questions used for the clustering are based
on the English question set in the EMIME system (Yamagishi and Watts,
2010) with adaptations towards our German phone set. They are listed by
Pucher et al. (2010b), except that we do not use multiple dialects here and
that we also included the Phoneme Equivalence Class (PEC)/viseme classes
of preceding, current, and succeeding phones (as described below).

In short, for audio-only modeling, we apply the state-of-the-art CSTR/
EMIME HTS system without modifications. For visual-only modeling, we
use the same system but with only one feature stream for the visual PCA-
space features. In order to obtain the same frame rate as the audio features
(5ms frame shift, i.e., 200 frames per second), we have up-sampled (inter-
polated) the visual features from their native 100 frames to 200 frames per
second. Similar to the mel-cepstral features, they are also augmented by
their dynamic features and the models are clustered using the same set of
questions. This results in a speaker-dependent text-to-visual speech system.
Furthermore, for joint audiovisual modeling, we merge the two into a system
that trains models for the three audio features (mel-cepstral, F0, aperiodic-
ity) and the visual features simultaneously. This is achieved by adding an
additional stream to the audio-only system, with separate state-wise clus-
tering. The structure of the audio, visual and audiovisual systems is shown
in Figure 4.10 in Chapter 4, where the black and blue parts constitute the
audio-only system, the black and red parts constitute the visual-only system
and all parts constitute the joint audiovisual system.

As discussed in Chapter 4, the generated visual parameter sequences can
be re-projected into the full-dimensional space, thus turning the features
sequences into sequences of facial marker coordinates again. Using a retar-
geting function for a 3D head model, these marker coordinate sequences can
be turned into facial animations.

As we have added an additional non-standard feature to the well-established
HSMM training system, it is of interest to see how the new feature is handled
by the system. One potentially informative parameter for this is the size
of the clustering trees. Table 6.1 gives the number of leaf nodes, i.e., the
number of distinct observation probability density functions, resulting from
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Table 6.1: Average number (across four speakers) of leaf nodes in the clus-
tering trees after training.

State

Training Feature 1 2 3 4 5 Total

Audio

Mel-cepstral 58 61 69 66 67 320
Log F0 146 219 241 149 100 856
Band-Ap 27 34 36 30 25 152
Duration 163

Audiovisual

Mel-cepstral 57 63 67 58 61 306
Log F0 164 218 259 164 121 925
Band-Ap 27 31 32 23 27 140
Visual 258 526 551 417 291 2042
Duration 208

Visual Visual 354 504 418 345 314 1934
Duration 312
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Figure 6.2: Average number (across four speakers) of total leaf nodes in the
visual clustering trees as a function of visual PCA dimensions kept (k).

the audio, audiovisual and visual training procedures, averaged across the
four speakers. The absolute numbers in such a table of course grow with
the size of the training corpus, but we can observe that the trees for the
visual features are substantially bigger than the ones for the other features,
which is still true if we choose a different dimensionality k to represent our
visual data, as illustrated in Figure 6.2 where the number of visual leaf
nodes is shown as a function of k resulting from audiovisual training. This
is somewhat surprising, given that the visual parameter trajectories appear
to be quite smooth in general (see Figure 6.4 for an example). We interpret
this as a strong dependency on context of our visual data.

We also find that the size of the duration tree of the visual-only voice model
is roughly twice the size of the audio-only duration tree, and that in the
combined audiovisual system we also see an (albeit smaller) increase in size
of the duration tree. Duration and audiovisual synchronization will be dis-
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cussed in more detail in Sections 6.3 and 6.4, but we can already see from
these numbers that duration modeling for the visual features seems to work
differently from the audio features.

In many approaches to (audio-)visual speech processing, the concept of
visemes (Fisher, 1968; Chen, 2001; Massaro et al., 2012) or, more gener-
ally, PECs (Bernstein, 2012) is used. The idea is roughly that phone(me)s
which have similar or even indistinguishable visual appearance (but which
may still be very different in acoustic terms) are grouped together for vi-
sual modeling. It is easy to integrate this concept into the HSMM modeling
framework, even with the flexibility to use the concept only partially: By
“offering” to the model clustering algorithm additional questions that corre-
spond to such groupings of phones according to their visual properties, the
maximum description length criterion (cf. Section 3.3.4) will automatically
make use of such PEC questions when and only when they are useful. To
determine to what degree PECs are beneficial or even necessary for visual
speech modeling in our setting, it is therefore sufficient to simply provide
additional questions alongside the ones mentioned earlier (e.g., phones and
phone groups based on acoustic criteria) and then to see whether these are
used to cluster the data at hand.

Based on the “easy set” in by Bernstein (2012), with adaptations towards
our phone set for German, we have added the following six PECs as possible
clustering questions: {p, b, m}, {f, v}, {t, d, s, z}, {k, g, n, N, l, h, j, ç, x},
{o:, u:, y:, ø:}, {O, U, Y, œ}.

Assuming that such PECs are useful for modeling the visual features but not
the acoustic ones, these questions should appear often in the clustering trees
for the former and rarely (or not at all) for the latter, when they are “offered”
at all clustering steps of all features. The percentages of decision tree leaves
affected by PEC questions are given in Table 6.2 for the three training
procedures and all features, averaged across four speakers. Here we consider
a leaf “affected” if at least one PEC question was answered affirmatively on
the path from the root to the leaf. In line with the expectations mentioned
before, we see that PEC questions clearly play a more important role in
clustering the models for the visual features than for the acoustic ones,
although they are also used for the latter to some extent. PEC questions
are especially relevant for the third (22.3%) and fourth (26.2%) states of the
visual stream. Interestingly, the presence of the visual features also has an
impact on the duration clustering in this respect (in addition to making the
duration trees larger, as we have discussed earlier): The duration trees of
the visual-only and the audiovisual models contain a higher percentage of
PEC-affected leaves than the acoustic-only models.

We conclude from these findings that the addition of clustering questions
specifically targeted towards visual features such as visemes or PECs can be
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Table 6.2: Average percentage (across four speakers) of leaf nodes affected
by PEC questions.

State

Model Feature 1 2 3 4 5 Overall

Audio

Mel-cepstral 8.9 6.1 5.8 5.4 7.6 6.7
Log F0 7.9 5.9 4.9 3.3 4.9 5.4
Band-Ap 1.0 4.2 3.9 2.6 0.0 2.5
Duration 5.1

Audiovisual

Mel-cepstral 9.3 4.8 4.6 1.7 5.4 5.1
Log F0 8.1 7.4 7.0 6.0 6.2 7.0
Band-Ap 6.1 3.3 0.7 2.2 2.7 2.9
Visual 13.1 10.2 22.3 26.2 13.5 17.3
Duration 12.7

Visual Visual 13.9 26.4 22.9 26.7 17.5 21.9
Duration 13.1

helpful in modeling the visual modality in this framework.

6.3 Audiovisual Synchronization Strategies

To achieve the goal of text-to-audiovisual-speech synthesis, both an acous-
tic speech signal and a visual speech signal (animation) need to be created
given some input text, and in addition to being natural or believable indi-
vidually, the two generated sequences need to match temporally. With the
three trained models described in the previous section available (audio-only,
visual-only and joint-audiovisual, each with its own duration model), there
are several possible strategies that lead to a combined audiovisual sequence
generated for some new input text. The following six subsections describe
five different ways of combining the two uni-modal models, as well as the
sixth “synchronization strategy” emerging directly from using a bi-modal
audiovisual model.

6.3.1 Unsynchronized (unsync)

The simplest strategy using the separately trained models is to synthesize
from each model independently and then just add the two generated se-
quences together. This has the advantage that each model will generate its
sequence “naturally”, i.e., the way that directly emerges from the training
process of the respective model. An important disadvantage is that there
are no synchronization constraints whatsoever, and the total length of the
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generated audio and visual sequences may even differ. We will refer to this
method, which uses two duration models, as unsync for short.

6.3.2 Audio Utterance Length (uttlen-audio)

While still using both duration models, we can ensure equal sequence length
by adjusting the speaking rate parameter ρ in the synthesis step (Yoshimura
et al., 1998). The state durations of an utterance consisting of K states (i.e.,
K/5 phones) are given by

dA(k) = µA(k) + ρ · σ2
A(k) for 1 ≤ k ≤ K, (6.1)

where µA(k) and σ2
A(k) denote the mean and variance of the audio duration

model for state k, respectively. When ρ is set to 0 for synthesis, we obtain
speech in average speaking rate, with ρ < 0 we obtain faster and with ρ > 0
slower speech. We can synthesize acoustically without constraints (ρA = 0),
and then determine the ρV required for visual synthesis that will yield the
same utterance length:

DA =
K∑
k=1

dA(k) =
K∑
k=1

µA(k), (6.2)

ρV =
DA −

K∑
k=1

µV (k)

K∑
k=1

σ2
V (k)

, (6.3)

where µV (k) and σ2
V (k) denote the mean and variance of the visual duration

model for state K.

This will produce an audio and visual parameter sequence for the utterance
which are exactly of the same length, but still each use their respective
duration model. We will refer to this strategy, which exhibits the “natural”
audio duration, as uttlen-audio for short.

6.3.3 Visual Utterance Length (uttlen-visual)

Symmetrically, by flipping the roles of audio and visual models, we obtain
another strategy that exhibits the “natural” visual duration, referred to as
uttlen-visual.

6.3.4 Copy Audio Duration (durcopy-audio)

In order to achieve tighter synchronization on the phone level, we can decide
to use only one of the two duration models, e.g., the audio duration model
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Table 6.3: Synchronization strategies for audiovisual synthesis.

Name Description

unsync unsynchronized separate duration models
uttlen-audio utterance length determined by audio duration model
uttlen-visual utterance length determined by visual duration model
durcopy-audio audio duration model used for both modalities
durcopy-visual visual duration model used for both modalities
audiovisual features trained jointly, audiovisual duration model

for both audio and visual synthesis. This is equivalent to replacing the visual
duration models and trees with the ones obtained from audio training. The
advantage here is the tighter synchronization, a possible disadvantage is that
a new duration model is forced upon the visual system which might not
match the visual feature models. We will refer to this strategy as durcopy-
audio.

6.3.5 Copy Visual Duration (durcopy-visual)

Likewise, we can replace the audio duration model with the visual one, which
we will call durcopy-visual.

6.3.6 Joint Audiovisual (audiovisual)

Finally, the audiovisual voice model with jointly trained features and with
a single audiovisual duration model generates synchronized parameter tra-
jectories implicitly. A priori it is not clear what kind of effect the additional
visual stream will have on the quality of the generated audio samples. One
can imagine that the additional information will lead to more robust pa-
rameter estimation and thus to an improvement of audio quality. On the
other hand, if the two signals reveal themselves to be rather inconsistent, a
negative effect on audio quality could arise. We will refer to this strategy as
audiovisual.

The six synchronization strategies are summarized in Table 6.3. Note that
the first three (unsync, uttlen-audio, uttlen-visual) use two duration models
whereas the last three (durcopy-audio, durcopy-visual, audiovisual) each use
a different single duration model. Furthermore note that unsync, uttlen-
audio and durcopy-audio produce synthetic speech identical to what the
regular audio-only system would produce.

The unsync method does not guarantee that audio and visual sequences
have the same length, but since both models are trained on the same syn-
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different speaker

same speaker
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seconds

Figure 6.3: Boxplots for the differences in utterance length between audio-
only and visual-only synthesized utterances. For 23 test utterances and 4
speakers, the top boxplot contains all 92 combinations where audio and vi-
sual models were from the same speaker, and the bottom boxplot contains all
276 combinations where the sequences were synthesized using two different
speakers’ models.

chronous corpus, the deviation can be expected to be small, as illustrated in
Figure 6.3, which shows boxplots of the difference in length when the same
utterance is synthesized from an audio-only and from a visual-only model
separately. The figure also shows clearly that this difference is significantly
smaller when the two models are from the same speaker (and thus trained
on a synchronous corpus), suggesting that this synchronization strategy can
not work for mixed-speaker setups, if at all.

The durcopy-audio method is a straightforward choice to align the borders
of both sequences by simply using the borders predicted by the audio model
also for the visual model, applied for example by Sako et al. (2000) and Scha-
bus et al. (2011).

The uttlen-audio method is interestingly similar to the explicit lag models
of Govokhina et al. (2007) and Bailly et al. (2009): with uttlen-audio, audio
is synthesized independently of the visual features, and a separate visual
duration model predicts the visual phone borders, while the length con-
straint ensures equal total length of the two sequences. The separate visual
model results from several iterations of embedded training on visual-only
data. The main difference is that Govokhina et al. (2007) and Bailly et al.
(2009) predict the visual phone borders as a relative offset to the audio bor-
ders, where the offsets are iteratively re-estimated based on visual forced
alignment.

6.4 Alignment Analysis

This section analyzes the temporal alignment behavior of the different mod-
els described in the previous section. Although speech movements and the
resulting sounds are synchronous in general, it is not clear a priori whether
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6.4 Alignment Analysis

the borders between phones in the visual speech signal should be the same
as in the audio speech signal. For example, at the beginning of an utterance,
anticipatory gestures can begin in the speech movement signal well before
any audible sound is produced. Although somewhat unnatural, it is com-
monplace in audio speech synthesis (as well as speech recognition) to define
sharp borders between the phones of an utterance and to compensate for
co-articulation effects by employing context-dependent modeling strategies
(as it is also done in the HTS system we use). Given an acoustic model,
such phone borders can be found automatically by forced alignment of the
known phone sequence to some speech data.

We have applied HSMM-based forced alignment via the HSMMAlign tool
from HTS version 2.2 to our training data using the different models we have
trained, in order to understand the temporal differences between auditory,
visual and joint audiovisual modeling. Given the auditory model and the
auditory data, this produces for each of the 200 utterances in the training
corpus the most likely phone borders that would make the auditory model
generate the speech parameters of this utterance. Likewise for the visual
model and data, as well as the audiovisual model and data.

Figure 6.4 shows an example sentence with the corresponding forced align-
ment results. In the first row, the visual-only model was used to align the
visual data, the resulting phone borders are designated by black vertical
lines. For easier interpretation, the plot shows the Euclidean distances be-
tween the central upper lip and central lower lip markers as well as between
the left and right mouth corner makers, instead of PCA components. In
the third row, the auditory-only model was used to align the auditory data.
Here, the first three mel-cepstral features are drawn in red in decreasing
thickness and F0 is drawn in green. The low flat portions of the F0 signal
represent unvoiced parts (undefined F0). All features have been re-scaled
to fit into the same vertical range. The second row combines all features,
and the alignment was determined using the joint audiovisual model. The
bottom row shows the spectrogram of the utterance. It is apparent that
there is a difference between the three resulting alignments.

In order to quantify this temporal alignment difference between the three
models, we have computed the alignments for all 200 utterances for all four
speakers. Then, to assess the degree of agreement between any two mod-
els, we have computed the time percentage of each utterance where the
two alignments agree. For an utterance u consisting of the phone sequence
(p1, p2, ..., pn), we compute the agreement percentage M(u,A,B) between
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Figure 6.5: Boxplots for matching percentage per utterance (Mutt) for audio
and audiovisual models (a, av), visual and audiovisual models (v, av) and
audio and visual models (a, v).

two models A,B ∈ {audio, visual, audiovisual} for that utterance as

Mutt(u,A,B) = 100
epn,A

·
n∑
i=1

max(0,min(epi,A, epi,B)−max(bpi,A, bpi,B)),

(6.4)
where bpi,X and epi,X denote the beginning and the end of phone pi as
determined by HSMMAlign using model X. Note that epn,A = epn,B is
simply the total length of the utterance.

The resulting matching percentages of all 800 utterances are shown as box-
plots in Figure 6.5. The degree of agreement between the auditory and
the audiovisual models is much higher (median 89.84%) than between the
visual and audiovisual models (median 62.93%) and between the auditory
and visual models (median 59.21%). The utterance in Figure 6.4 is a typical
example in this regard with (a, av)-match 89.31%, (v, av)-match 62.66%,
and (a, v)-match 58.88%.

We have also computed the matching percentages for any two methods for
each individual phone. The percentage is calculated as the amount of time
that both alignments consider as being part of the phone divided by the
average of the two phone lengths, formally

Mphone(pi, A,B) = 100 ·max(0,min(epi,A, epi,B)−max(bpi,A, bpi,B))
1
2((epi,A − bpi,A) + (epi,B − bpi,B))

.

(6.5)
Figure 6.6 shows the results grouped by phones (i.e., central phones of the
respective quin-phone full-contexts). Apart from the overall better match
between auditory and audiovisual (Figure 6.6a) compared to the two other
pairs (Figure 6.6b and 6.6c), which is also shown by Figure 6.5, it can
be seen in these plots that the bottom 12 phones in (6.6b) and (6.6c) are
the same, and in almost the same order (by median). These 12 phones
show a particularly large mismatch between the visual alignment and both
the auditory and the audiovisual alignment, which suggests that for these
phones [@, P, n, t, I, d, g, l, ö, ç, h, i:] the training procedure in the visual-
only case determined strongly different phone borders from the other two
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6 Synchronization of Speech and Motion

cases. A possible explanation for this is that these phones do not produce
prominent effects in the visual feature trajectories, which seems intuitive:
since our visual features consist of tracked markers on the lips and face only
(and not, e.g., motion features of the tongue or other intra-oral articulators),
phones that do not have a strong effect on the movement of the lips and
jaw are difficult to capture in the visual feature space. The consonants [P,
n, t, d, g, l, ö, ç, h] are all mainly defined by intra-oral articulation—in
contrast to, e.g., the consonants [f, p, b, m, S], which have a strong effect on
lip motion and accordingly appear close to the top in Figure 6.6b and 6.6c.
Likewise, it can be argued that the vowels [@, I, i:] exhibit rather indistinct
lip motion, whereas diphthongs and rounded vowels can be expected to yield
more characteristic trajectories.

6.5 Evaluation

In order to assess the quality of the various models and synchronization
strategies described in Section 6.3, we have carried out a subjective eval-
uation experiment with 21 non-expert subjects (13 female, 15 male, aged
20 to 37, mean age 26.5) using a web-based experimental setup. For this
experiment, 10 held-out test utterances from our recordings were synthe-
sized using all methods and synchronization strategies and all of our four
speakers. The evaluation consisted of an acoustic-only and an audiovisual
part.1

6.5.1 Acoustic Evaluation

To investigate the effect on quality of the audio synthesis of the joint-
audiovisual system by adding an additional visual stream, we have eval-
uated the different methods in a pair-wise comparison listening test. In
each comparison, the listeners heard two audio samples from two differ-
ent methods, but containing the same utterance from the same speaker.
After hearing each sample as many times as they liked, they were asked
to decide which of the two they preferred with respect to overall quality.
No preference (a “tie”) was also an option. Four methods for synthesizing
audio were compared in this test: audio, which represents the regular audio-
only system (and hence the synchronization strategies unsync, uttlen-audio
and durcopy-audio), audiovisual, which represents the audio generated from
the joint-audiovisually trained model, durcopy-visual, which represents au-
dio synthesized with the visual duration model (used in the synchronization

1Example stimuli for all parts of the evaluation are available on http://schabus.xyz/
phd/audiovisual.
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6 Synchronization of Speech and Motion

Table 6.4: Evaluation results for the acoustic part.

Compared Methods wins ties sig.

recorded : audio 76 : 3 1 ∗
recorded : audiovisual 77 : 1 2 ∗
recorded : durcopy-visual 79 : 1 0 ∗
audio : audiovisual 19 : 11 50
audio : durcopy-visual 44 : 6 30 ∗
audiovisual : durcopy-visual 43 : 2 35 ∗

strategy of the same name), and original recorded speech (recorded).2 All
possible comparisons were heard twice by different listeners. The results are
given in Table 6.4, where the “winning” scores and the number of ties are
listed for each method pair. In the last column, the symbol “∗” indicates sta-
tistical significance of the score difference according to Bonferroni-corrected
Pearson’s χ2-tests of independence with p < 0.01.

Recorded audio was rated better than synthetic speech from any of the meth-
ods, and audio synthesized using the visual duration model (durcopy-visual)
was rated worse than everything else. The small difference between audio
and audiovisual (19 vs. 11) is not statistically significant (p > 0.42) and
their similarity is also reflected in the large number of “ties” (50). We inter-
pret these results to indicate that the additional visual stream in the joint
audiovisual training has no significant effect (neither positive nor negative)
on the quality of the generated acoustic speech signals.

6.5.2 Audiovisual Evaluation

In order to evaluate the audiovisual models and in particular the tempo-
ral alignment quality of the different synchronization strategies described
in Section 6.3, we compared rendered videos consisting of synthesized fa-
cial motion and synthesized speech in the second part of the experiment.
Similar to Bailly et al. (2002), to focus on evaluating the quality of the
generated marker motion rather than the quality of the retargeting proce-
dure or the appearance of the 3D head model, we have decided to present
the raw synthesized marker motion to the subjects, i.e., renderings of the 27
points moving in 3D space, with some supporting lines added for orientation
as shown in Figure 6.7a. The inner lip contours were added automatically
based on a fixed distance between the outer lip markers and six correspond-
ing points that define the inner lip. Even though this method does not

2We did not include the audio from the synchronization strategy uttlen-visual, because
it is barely if at all distinguishable from audio, due to the small absolute values of ρ in
our experiments.
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6.5 Evaluation

(a) (b)

Figure 6.7: Mode of speech motion presentation in the first and second
(expert) evaluations. Example videos are available on http://schabus.
xyz/phd/audiovisual. (a) Raw marker data. (b) Data-controlled 3D head.

necessarily produce all lip closures, it only generates correct lip closures.
Note that in a setup with marker motion retargeting to a 3D head, these
lines are not needed and all speech motion, including closures and lip com-
pression, is computed based on the marker positions alone by the retargeting
procedure.

In each pair-wise comparison in this part of the experiment, the subjects
saw two videos from two different methods containing the same utterance
from the same speaker. After watching each video as many times as they
liked, they were asked to decide which of the two had better synchroniza-
tion between acoustic speech and visible speech movement. No preference
(a “tie”) was also an option. As it was done in the LIPS 2008/2009 chal-
lenges (Theobald et al., 2008), we have chosen to ask specifically for syn-
chronization quality, rather than testing more generally for intelligibility and
naturalness.

In this test, we compared all synchronization strategies described in Sec-
tion 6.3, as well as recorded speech and motion data, against each other. The
results are given in Table 6.5, where the “winning” scores and the number of
“ties” are listed for each method pair. In the last column, the symbol “∗” in-
dicates statistical significance of the score difference according to Bonferroni-
corrected Pearson’s χ2-tests of independence with p < 0.05.

The results in Table 6.5 confirm that recorded speech and recorded speech
movements were perceived to be synchronized significantly better than any
generated stimuli, and that durcopy-visual was perceived as having worse
synchronization than the two uttlen methods. In particular, the audiovisual
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6 Synchronization of Speech and Motion

Table 6.5: Evaluation results for the audiovisual part.

Compared Methods wins ties sig.

recorded : audiovisual 32 : 5 3 ∗
recorded : durcopy-audio 25 : 7 8 ∗
recorded : durcopy-visual 32 : 6 2 ∗
recorded : uttlen-audio 24 : 9 7 ∗
recorded : uttlen-visual 26 : 8 6 ∗
recorded : unsync 25 : 11 4 ∗
audiovisual : durcopy-audio 9 : 17 14
audiovisual : durcopy-visual 18 : 8 14
audiovisual : uttlen-audio 10 : 10 20
audiovisual : uttlen-visual 11 : 20 9
audiovisual : unsync 9 : 14 17
durcopy-audio : durcopy-visual 11 : 9 20
durcopy-audio : uttlen-audio 6 : 11 23
durcopy-audio : uttlen-visual 10 : 12 18
durcopy-audio : unsync 12 : 12 16
durcopy-visual : uttlen-audio 6 : 21 13 ∗
durcopy-visual : uttlen-visual 6 : 18 16 ∗
durcopy-visual : unsync 8 : 19 13
uttlen-audio : uttlen-visual 8 : 14 18
uttlen-audio : unsync 11 : 9 20
uttlen-visual : unsync 9 : 9 22

method only performed differently from the recorded condition but not from
any other method. We expected the audiovisual method to be perceived as
having the closest synchronization between the visual and the audio stream.
However, there are several possible reasons for the absence of such a per-
ceived synchronization:

• The utterances in the evaluation were short (4–7 words), randomly
selected held-out test sentences from our recorded data. Longer sen-
tences rich in phones that exhibit prominent lip motion (as identified
in Section 6.4) might show stronger differences between the methods.

• The decision to present animated raw marker data rather than an
animated 3D head model controlled by this data might have been a
counter-productive one.

• The test subjects were non-experts recruited on the web, who might
have only reported very obvious differences, resulting in “washed-out”
results for the more subtle differences.

To further test the synchronization, an additional evaluation was carried
out with subjects judging “challenging” utterances, which were longer (12–
17 words), semantically unpredictable but syntactically correct utterances,
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6.5 Evaluation

Table 6.6: Evaluation results using “challenging” utterances.

experts non-experts

Compared Methods wins ties sig. wins ties sig.

audiovisual : durcopy-audio 15 : 5 5 ∗ 25 : 24 16
audiovisual : uttlen-audio 17 : 3 5 ∗ 34 : 22 9
audiovisual : uttlen-visual 17 : 4 4 ∗ 31 : 23 11
durcopy-audio : uttlen-audio 10 : 8 7 31 : 15 19 ∗
durcopy-audio : uttlen-visual 10 : 8 7 30 : 18 17
uttlen-audio : uttlen-visual 5 : 6 14 18 : 25 22

rich in audiovisual “landmarks”, synthesized following the four synchroniza-
tion strategies audiovisual, uttlen-audio, uttlen-visual and durcopy-audio.
We do not have recordings of these utterances and we excluded the durcopy-
visual strategy because of its bad performance in the first evaluation. We
also excluded unsync because of the strong similarity of this method to the
two uttlen methods. We applied the synthesized marker motion to a 3D
head model via retargeting and created rendered animation sequences from
these (see Figure 6.7b for an example frame). 13 non-expert subjects and 5
expert subjects (speech technology, phonetics) took part in this evaluation
(9 female, 9 male, aged 22 to 58, mean age 33.9). Otherwise the experi-
mental setup was identical to the first evaluation. The results are given in
Table 6.6.

For these “challenging” utterances, the experts perceived the audiovisual
method to produce significantly better speech/motion synchronization than
the other methods, which show no significant difference among each other.
For the non-expert subjects, on the other hand, the only significant dif-
ference is between ducropy-audio and uttlen-audio. This suggests that the
audiovisual method produces improved synchronization, but some subtle dif-
ferences are not consciously perceived by the non-expert subjects, although
a clear trend in favor of the audiovisual method is also visible for the non-
experts.

Figure 6.8 shows excerpts of synthesized trajectories for one of the “challeng-
ing” utterances. The top part of the figure illustrates the uttlen-visual strat-
egy. Although identical total utterance duration is ensured, the two duration
models generate different phone durations within the utterance, resulting in
a clear misalignment of some feature “landmarks”, as indicated in the fig-
ure by dashed magenta lines. The middle part of the figure illustrates the
joint audiovisual strategy. The single audiovisual duration model provides
better alignment of the same feature “landmarks”. It is quite obvious that
this causes a perceptible improvement over the uttlen-visual method. The
bottom part illustrates the durcopy-audio method. Overwriting the visual
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Figure 6.8: Excerpts of synthesized audiovisual trajectories for one of the
“challenging” utterances from different synthesis strategies: uttlen-visual
(top), audiovisual (middle) and durcopy-audio (bottom). The plots show
the Euclidean distance between the central upper lip and central lower lip
markers (thick blue line), the Euclidean distance between the left and right
mouth corner markers (thin blue line), the first three MFCCs (red, with
decreasing thickness) and F0 (green). The different features have been re-
scaled to fit into the same vertical range. Some feature landmark correspon-
dences are indicated by magenta dashed lines. The sentence is “Selbst wenn
der Nottaste beim Nachsagen schmalere Paradoxa passierten fragt der Bahn-
schaffner fahrerder Wagen weiter” (even if narrower paradoxes happened to
the emergency button while repeating, the train conductor of moving cars
continues to ask).
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6.6 Conclusion

duration model with the audio one guarantees alignment of the phone bor-
ders, resulting in good alignment also of the feature “landmarks”. However,
forcing the visual system to use predefined durations can result in artifi-
cial contraction or stretching of phones, leading to unnaturally fast or slow
movement, as visible in the stretched [p] phone between second 4 and 4.5.
As the expert evaluation has shown, this leads to a perceptible inferiority of
this synchronization strategy to the audiovisual method.

6.6 Conclusion

In this chapter we showed that joint audiovisual speech synthesis improves
the quality of the visual speech compared to other synchronization ap-
proaches. In our first evaluation we saw no differences between audiovisual
modeling and other synchronization approaches, except for the recorded
data which was always better than the models. Concerning acoustic syn-
thesis quality, all models except audiovisual performed worse than acoustic
modeling only.

During an additional evaluation with visually challenging utterances, the
audiovisual model performed significantly better than other synchroniza-
tion approaches when judged by expert listeners. In addition, the analysis
of the state-alignments, produced by the different models, showed objective
differences in audiovisual alignment between the proposed approaches. In
summary the proposed integrated speaker-dependent audiovisual approach
allows for joint modeling of visual and acoustic signals while maintaining
high-quality acoustic synthesis results with improved audiovisual synchro-
nization over other methods.
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Chapter 7

Speaker-Adaptive
Audiovisual Speech
Synthesis

In this chapter, which is closely related to the earlier publication of Schabus
et al. (2012b), we apply speaker-adaptive and speaker-dependent training
of hidden Markov models (HMMs) to visual speech synthesis. In speaker-
dependent training we use data from one speaker to train a visual and acous-
tic HMM. In speaker-adaptive training, first a visual background model (av-
erage voice) from multiple speakers is trained. This background model is
then adapted to a new target speaker using (a small amount of) data from
the target speaker. This concept has been successfully applied to acoustic
speech synthesis. This chapter demonstrates how model adaption is applied
to the visual domain, synthesizing animations of talking faces. A perceptive
evaluation is performed, showing that speaker-adaptive modeling outper-
forms speaker-dependent models for small amounts of training / adaptation
data.

7.1 Introduction

The goal of audiovisual text-to-speech synthesis is to generate both an acous-
tic speech signal as well as a matching animation sequence of a talking
face, given some unseen text as input. Most commonly, acoustic and visual
synthesis are addressed separately, and although we have addressed joint
audiovisual modeling in Chapter 6, we follow the separated approach in this
chapter.

In the preceding chapters, we have already shown that the popular acoustic
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7 Speaker-Adaptive Audiovisual Speech Synthesis

HMM-based speech synthesis system HTS can be extended to the visual
domain for training and synthesis of 3D facial motion control parameters.
However, as with all HMM-based approaches, large amounts of training
data are required to build high quality systems and recording large amounts
of visual data is even more costly than recording audio data. To address
this shortcoming for speakers where limited amounts of data are available,
a very successful speaker-adaptive approach has been developed (Yamag-
ishi and Kobayashi, 2007; Yamagishi et al., 2009a) for acoustic HMM-based
speech synthesis, as presented briefly in Chapter 3. A (possibly large)
speech database containing multiple speakers is used to train an average
voice, where a speaker-adaptive training (SAT) algorithm provides speaker
normalization. Then, a voice for a new target speaker can be created by
transforming the models of the average voice via speaker adaptation, using
(a possibly small amount) of speech data from the target speaker. This al-
lows the creation of many speakers’ synthetic voices without requiring large
amounts of speech data from each of them. It can be shown that synthetic
speech from voice models created in this way is perceived as more natural
sounding than synthetic speech from speaker-dependent voice models using
the same (target speaker) data (Yamagishi and Kobayashi, 2007). This holds
especially for the case where this data is of small amount. The goal of this
chapter is to demonstrate how this speaker-adaptive training approach can
be applied to visual speech synthesis.

7.2 Adaptive visual speech synthesis system

The CSTR/EMIME training scripts for the HTS system that were extended
to visual and audiovisual synthesis (cf. Chapter 4) are also provided in a
speaker-adaptive version for training average voices across multiple speak-
ers and in a target speaker adaptation version. For the investigations in
this chapter, these were modified for visual speech synthesis, in a similar
way as the speaker-dependent versions. The resulting speaker-adaptive vi-
sual modeling framework is illustrated in Figure 7.1 (cf. Figure 3.8 from
Chapter 3). It consists of a training, adaptation, and synthesis module.
Context-dependent, left-to-right, hidden semi-Markov models (HSMMs) are
trained on multi-speaker visual databases in order to simultaneously model
the visual features, as well as duration. We use SAT based on CMLLR
for the training of the average visual models and for adaptation also CM-
LLR (Yamagishi and Kobayashi, 2007; Yamagishi et al., 2009a). The visual
feature extraction is applied to a multi-speaker database before training,
and to a possibly different single speaker database before adaptation. In
the synthesis step, visual parameters are generated from the adapted mod-
els.
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Figure 7.1: Overview of the speaker-adaptive visual modeling framework.

As exemplary data, the FMSC corpus was used, i.e., audiovisual speech
recordings of one female and two male speakers of Standard Austrian Ger-
man (cf. Chapter 5). The recordings consisted of 223 utterances (roughly
11 minutes) per speaker. Figure 7.2 shows example frames.

As described in Chapter 4, the visual feature extraction we use for the
training of the average visual voice first applies mean normalization and
SVD to derive a matrix Uk that is used to project the recorded marker data
to a lower k-dimensional space. In the adaptation step we also perform mean
normalization using the speaker mean µs and then useUk from average voice
training to reduce the visual adaptation features. In visual synthesis, the
generated features are projected back to the full feature space using U−1

k ,
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7 Speaker-Adaptive Audiovisual Speech Synthesis

Figure 7.2: Still images from the recording session (left), the corresponding
3D marker data (middle) and the resulting pose of the virtual head with
this data applied (right). See also videos at http://schabus.xyz/phd/
adaptation.
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7.3 Evaluation

and the speaker mean µs is added. The resulting visual features are used
to animate a talking head.

We would like to emphasize that the feature projection matrix Uk is the
same in the training, adaptation and synthesis steps, and that it is deter-
mined via SVD without using data from the target speaker, i.e., in the entire
process there is only one SVD calculation, namely across all speakers that
contribute to the average voice. The speaker means, on the other hand, are
subtracted per speaker before SVD and projection in the training part, and
also before projection in the adaptation part.

In speaker-dependent modeling, the training data comes from one speaker s,
Uk and µs are determined on that speaker’s data and the whole adaptation
step is missing.

7.3 Evaluation

To evaluate our system, 10 held-out test utterances where visually synthe-
sized. In order to allow for direct comparison of recorded data to synthesized
utterances, the true phone durations from the recorded data were employed
instead of generated durations from the trained duration models. This re-
sults in all stimuli from the same speaker and utterance to be of equal length
on a phone-by-phone basis. In terms of the synchronization strategies dis-
cussed in Chapter 6, the setup here is similar to the durcopy-audio strategy
(cf. Section 6.3), except that the phone durations are not predicted from the
audio duration model but taken from the forced alignment results on the
recorded data.

We compare the recorded visual data (which we will refer to as recorded) to
four training strategies: 1) The speaker-adaptive method we presented in
the previous section, where an average voice is trained on the data of two
speakers (212 utterances each), which is then adapted to the third speaker
using also 212 utterances (adapted). 2) A corresponding speaker-dependent
model, trained on the target speaker’s 212 utterances (sd). 3) An adapted
model with a small amount of adaptation data; here, the average voice is the
same as in adapted, but for adaptation we use the smallest set of utterances
that contains each phone at least three times (19 utterances) (adapt small).
4) A speaker-dependent model trained on the same small amount of data
(sd small).

Similar to our objective reconstruction error calculations during the analysis
of the PCA projections (Chapter 4), we have computed objective errors by
calculating the frame-wise deviations of marker positions between recorded
and synthesized sequences. Figure 7.3 shows the resulting RMSE, calculated
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7 Speaker-Adaptive Audiovisual Speech Synthesis

●
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Figure 7.3: Box plots of the root mean squared differences between synthe-
sized and recorded marker positions.

across all frames of each utterance. Since we have 10 test utterances and
three speakers, each box plot contains 30 RMSE values. Unfortunately, these
objective results are not very informative. If anything, we can observe that
the RMSE for sd small is slightly larger than for the other methods. This
is mainly due to temporal misalignment: although we force the parameter
generation to produce the same phone durations as the ones in the recorded
data, slight temporal shifts of the valleys and peaks of a trajectory within a
phone can cause a large error even though the movement of the correspond-
ing maker is “correct”. Objective evaluation of synthesized marker motion
by comparison to recorded data is therefore not straightforward.

Therefore, we have conducted a perceptive experiment with 28 test subjects
(11 female, 17 male, aged 15 to 49, mean age 27.5). Each subject saw 45 pairs
of videos showing a virtual head driven by two different models (recorded,
sd, sd small, adapted, adapted small), where all possible combinations of
methods, speakers and utterances were distributed among the subjects such
that each subject saw each of the ten method combinations, as well as each
speaker-utterance at least once. To each video we have added a synthetic
speech sample generated from models that we trained on the corresponding
speaker’s acoustic data from our synchronous corpus. As for the visual
synthesis, we have provided the phone borders from the recordings rather
than using the duration model.1

For each video pair, the subjects selected whether they preferred the first or
the second video, or they thought they were of equal quality. The results are
given in Table 7.1, where we have counted the number of “won” comparisons
and the number of “ties” for each method pair. To assess the statistical sig-
nificance of these preference scores, we have computed Bonferroni-corrected
Pearson’s χ2-tests of independence with p < 0.01 for each method pair. The

1See example stimuli at http://schabus.xyz/phd/adaptation.
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Table 7.1: Pair-wise comparison scores.

Compared methods wins ties sig.
recorded : sd 74 : 33 20 ∗
recorded : sd small 95 : 25 10 ∗
recorded : adapt 95 : 20 10 ∗
recorded : adapt small 86 : 22 10 ∗
sd : sd small 64 : 36 22 ∗
sd : adapt 54 : 39 28
sd : adapt small 56 : 37 39
sd small : adapt 56 : 34 35
sd small : adapt small 31 : 57 37 ∗
adapt : adapt small 27 : 35 73

results are given in the last column of Table 7.1, where the symbol “∗” in-
dicates a statistically significant influence of the methods on the preference
scores.

The animations that replay the recorded data are preferred significantly
more times over all the synthesis methods. Furthermore, within the speaker-
dependent methods sd and sd small, the reduction in training data results
in a significant difference between the two. The result between sd and
adapt is not significant, but shows a trend towards the speaker-dependent
model. However, adapt small is preferred over sd small, and the difference
is statistically significant.

Summarizing, this chapter demonstrated how to apply average voice train-
ing and speaker adaptation to visual speech synthesis. This is useful when
creating new systems for speakers where very few training utterances are
available. In addition, with limited amount of training data the speaker
adaptive approach outperforms speaker-dependent training. However, sev-
eral additional experiments need to be conducted in future work. In par-
ticular, speaker similarity, a measure of how close synthesized data mimics
specific speaker characteristics, needs to be investigated.
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Chapter 8

Conclusion

This last chapter concludes the dissertation, by summarizing the preceding
chapters and the respective scientific findings that were reported there, and
by providing an outlook to possible future research, where questions could
be addressed that have been left unanswered here or are otherwise related
to this body of work.

8.1 Summary

This dissertation presented our investigations of audiovisual speech synthesis
using hidden Markov models, i.e., the problem of generating audible speech
and matching facial movement parameters for a 3D head model for any
given textual input, using a statistical machine learning approach. While
the application of the HMM-framework for (acoustic) speech synthesis to
(audio-)visual signals is not novel in itself, several particular investigations
that have been presented here do make a contribution to the advancement
of the field, and those investigations have accordingly been published at
relevant international journals and conferences.

Perhaps the most significant contribution—and certainly the most impor-
tant of the published papers—is the study on joint audiovisual modeling
presented in Chapter 6 (and previously in Schabus et al., 2014a). Most ap-
proaches to audiovisual speech synthesis that have been published to date
treat the acoustic part as given and fixed and instead focus on the visual
parts only. In order to synchronize the generated visual signal to the acous-
tic one, the phone borders as predicted by the acoustic system are passed
on to the visual system. However, the detailed objective analysis in Chap-
ter 6 has shown that in the HMM framework, the phonetic borders resulting
from visual-only modeling are much less reliable than those resulting from
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acoustic-only or joint audiovisual modeling. This suggests that the split into
an audio-only and visual-only part may result in both weaker synchroniza-
tion and degraded quality of visual modeling. In line with these findings,
the subjective evaluation of the proposed truly joint audiovisual modeling
approach showed a noticeable improvement over separate modeling.

Chapter 7 (and previously Schabus et al., 2012b) presented a study on
speaker-adaptive visual speech synthesis. The concept of adaptation, where
first an average voice of multiple speakers is trained, which is then adapted
towards a specific target speaker, has been one of the key factors in the
success of the HMM-based speech synthesis framework. In spite of this,
adaptation had not been previously explored for the visual speech domain.
The experiments described in Chapter 7 showed that this concept is indeed
applicable also to the visual domain, and that the adaptive method does
outperform the “classical” speaker-dependent method, at least when the
amount of data available from the target speaker is small.

As a pre-requisite for visual speaker-adaptive training, a suitable representa-
tion of the visual signal is required. The feature extraction part of Chapter 4
(and previously Schabus et al., 2012a and Schabus et al., 2013) addressed
this issue. Principal Component Analysis (PCA) can provide dimension-
ality reduction and component de-correlation, resulting in feature vectors
that are well-suited for statistical modeling, because diagonal instead of full
covariance matrices may be used. The objective and subjective evaluation
experiments described in Chapter 4 furthermore showed that a common sub-
space for multiple speakers can be found via PCA and that such a sub-space
is also general enough to contain new (target) speakers, as long as the num-
ber of dimensions is not reduced too aggressively; hence this method of visual
feature extraction is suitable for adaptive visual speech modeling.

In order to be able to carry out the aforementioned experiments, a pipeline
for recording, feature extraction, model training, synthesis and animation
rendering had to be developed, as described in Chapter 4 (and, to some
degree, previously in Schabus et al., 2011, Schabus et al., 2012b and Scha-
bus et al., 2014a). For the core part—model training and synthesis—the
well-known acoustic speech synthesis framework HTS was extended to ad-
ditionally utilize visual speech features. Furthermore, several original soft-
ware components were developed, for example for visual feature extraction,
semi-automated data cutting and synchronization, point cloud visualization,
batch retargeting and rendering, objective evaluations via distance measure
calculations, and subjective evaluations via web-based user trials.

Finally, adequate data is required for experiments in data-driven speech
signal processing. In contrast to acoustic speech, corpora of speech mo-
tion tracking data are not readily available from the research community.
Therefore, three corpora of synchronous speech recordings with 3D facial
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motion tracking data have been created within this dissertation project, as
described in Chapter 5 (and previously in Schabus et al., 2012a, Schabus et
al., 2014a and Schabus et al., 2014b). Recordings in Standard Austrian Ger-
man from eleven speakers, Austrian dialectal recordings from eight speakers,
and recordings of varying speaking rate with additional tongue motion track-
ing from one speaker were recorded, pre-processed, labeled and manually
refined. Most of this data is already available on the Internet for research
purposes, and an additional release of the remaining data is planned for the
future.

In addition to presenting the conducted research, this dissertation also at-
tempted to give a broad overview over its background and related work,
covering other approaches to (audio-)visual speech synthesis in Chapter 2
and the HMM framework for (acoustic) speech synthesis in Chapter 3.

8.2 Outlook

Several open questions can be identified that seem to be relevant to the
field of audiovisual speech synthesis from the perspective of the end of this
multi-year research project.

The adaptation paradigm has not yet been exhaustively investigated for vi-
sual and audiovisual speech synthesis. Chapter 7 has addressed this topic
and shown the principal applicability of the adaptive approach to the visual
domain. However, larger experiments seem to be necessary, using data from
many more speakers and conducting more extensive evaluations, with the
goal to show much clearer benefits of the adaptive approach than Chapter 7
was able to deliver. Such experiments should also include studies on the
achieved target speaker similarity of the generated facial motion, using ob-
jective and subjective measures. Due to the large influence of the 3D head
and the retargeting function on the perception of the end result, this may
turn out to be quite difficult. Showing the need for speaker-specific facial
motion is however crucial for “justifying” adaptation, because otherwise a
single high-quality face motion model may be used for all speakers. With
increasing fidelity of facial motion capturing, especially marker-less systems
that directly capture a facial mesh of high resolution, speaker-specific mo-
tion models can be expected to become more important than they are for
the kind of data used in this dissertation. In addition to average voices and
adaptation, audiovisual data from multiple speakers allows experiments on
mixed-speaker setups, speaker swapping, speaker interpolation etc. in the
visual and audiovisual domain.

Different performance capturing methods and other data sources are gener-
ally an interesting topic from a synthesis point of view. The same HMM-
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based trajectory modeling methodology can be applied to any parametriza-
tion of facial motion over time, provided that it exhibits sufficient temporal
smoothness and hence predictability within short intervals. For high-density
facial surface recordings, this might require a dimensionality reduction step
such as PCA, as described in Chapter 4. Such recording collections may
also help to automate the creation of (marker to full mesh) retargeting func-
tions, by placing “virtual” markers on the recorded high-resolution face and
learning their influence on the entire face using some sort of regression.
Furthermore, large quantities of high-quality facial parameter data exist in
animated films and computer games. This kind of data is typically recorded
and then extensively improved by animation experts, if not entirely cre-
ated manually, and thus would make an interesting body of training data,
if it were available. Independent of the data source, automatic retargeting
generally remains an interesting open challenge for the field of 3D audio-
visual speech synthesis, especially concerning lip closures and non-rigid lip
deformations.

Chapter 6 has touched on the topic of visemes/phoneme equivalence classes.
This topic, or more generally speaking, the choice of the optimal phone
inventory for audiovisual speech modeling, remains an open problem, again
requiring objective and especially subjective evaluation experiments.

As mentioned in Chapter 5, audiovisual recordings of Austrian dialect speak-
ers have been created during this project. While it is straightforward to
create dialectal audiovisual synthesizers from this kind of data, other in-
teresting problems can be investigated, like dialect/standard interpolation,
cross-mapping of dialects and speakers, and dialect adaptation, all of which
are being investigated for acoustic speech synthesis but not yet for the visual
domain. Before turning to the modeling part of these problems, it should
be verified that the choice of language variety (or even the choice of lan-
guage) within the same speaker does actually have an objectively and/or
subjectively detectable influence on the facial motion parameters.

A special data corpus that includes electromagnetic tongue motion record-
ings in addition to optical face marker data was presented in Chapter 5.
Some preliminary data analysis was carried out on this data, but there are
several additional interesting ways in which this corpus could be used. For
example synthesis including tongue motion, which should be straightforward
to realize using the same methods as presented for face motion in this dis-
sertation. However, a 3D head with retargeting also defined for the tongue
would be required. As another example, modification of acoustic parameters
by visual control or combined articulatory-visual control could be realized,
similar to existing articulatory-to-acoustic control models.

In acoustic speech synthesis research, there is a generally accepted consen-
sus that the quality of generated speech cannot be assessed using objective
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measures alone, but that subjective listening experiments are required to ob-
tain meaningful evaluation results. Throughout this project, it has become
evident that the same is true also for visual speech signals. Furthermore,
it has turned out that subjective evaluation of facial motion seems to be
a very difficult task. Many factors, like the appearance of the 3D head
and the quality of the retargeting function play an important role and may
mask small differences in the generated parameter trajectories. On the other
hand, several experiments showed that presenting the raw marker motion as
point cloud animations does also not seem to be a good alternative, perhaps
because the resulting stimuli are inherently unnatural and quite uniform. It
remains a challenge to define how to best evaluate synthesized visual speech,
especially if we think about comparing different systems/approaches to each
other.

For animated films and computer games, merely producing “correct” speech
and speech motion is not sufficient to convey a particular story. Emotional
and conversational speech need to be produced, accompanied by non-verbal
facial and vocal behavior like facial expressions, laughter, yawning, sneezing,
screaming, etc. This was not addressed in this dissertation, but it is a
very important and at the same time extremely difficult challenge for the
field.
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